Bioavailability of surface dissolved organic matter to aphotic bacterial communities in the Amundsen Sea Polynya, Antarctica
Antarctic seas, and particularly the Amundsen Sea Polynya, are some of the most productive oceanic regions on Earth. Ice-algal production during austral spring is followed by open-water pelagic production later in the season. Although ice-free growth accounts for a greater percentage of the annual n...
Published in: | Elementa: Science of the Anthropocene |
---|---|
Main Authors: | , |
Format: | Text |
Language: | unknown |
Published: |
W&M ScholarWorks
2015
|
Subjects: | |
Online Access: | https://scholarworks.wm.edu/vimsarticles/835 https://scholarworks.wm.edu/context/vimsarticles/article/1835/viewcontent/67_674_1_SM.pdf |
id |
ftwilliammarycol:oai:scholarworks.wm.edu:vimsarticles-1835 |
---|---|
record_format |
openpolar |
spelling |
ftwilliammarycol:oai:scholarworks.wm.edu:vimsarticles-1835 2023-06-11T04:03:33+02:00 Bioavailability of surface dissolved organic matter to aphotic bacterial communities in the Amundsen Sea Polynya, Antarctica Sipler, RE Connelly, TL 2015-01-01T08:00:00Z application/pdf https://scholarworks.wm.edu/vimsarticles/835 doi: 10.12952/journal.elementa.000060 https://scholarworks.wm.edu/context/vimsarticles/article/1835/viewcontent/67_674_1_SM.pdf unknown W&M ScholarWorks https://scholarworks.wm.edu/vimsarticles/835 doi: 10.12952/journal.elementa.000060 https://scholarworks.wm.edu/context/vimsarticles/article/1835/viewcontent/67_674_1_SM.pdf VIMS Articles Physical Sciences Peer-Reviewed Articles Aquaculture and Fisheries text 2015 ftwilliammarycol https://doi.org/10.12952/journal.elementa.000060 2023-05-04T17:43:31Z Antarctic seas, and particularly the Amundsen Sea Polynya, are some of the most productive oceanic regions on Earth. Ice-algal production during austral spring is followed by open-water pelagic production later in the season. Although ice-free growth accounts for a greater percentage of the annual net primary production, ice algae provide an important source of nutrients to organisms throughout the water column and benthos in areas and seasons when open-water production is insignificant. The objectives of this study were to assess the bioavailability of dissolved organic matter (DOM), sourced from ice algae or the chlorophyll maximum (chl max), to marine bacterioplankton and to determine the fate of carbon within these different DOM pools, including loss to respiration, incorporation into bacterial biomass and retention within the DOM pool itself. Nutrient concentrations and bacterial abundance, production, and cell volume were monitored during a 7-day bioassay study involving four treatments conducted shipboard in the Amundsen Sea Polynya, Antarctica. The greatest response in bacterial abundance and activity was observed when ice-algal meltwater was supplied to aphotic zone bacterioplankton collected from 170-m depth. However, bacterial growth efficiency was higher (24%) when chl max water was supplied to the same aphotic zone bacterial community compared to the bacterial growth efficiency of the ice-algal treatment (15%). Approximately 15% of dissolved organic carbon (DOC) from the ice-algal source and 18% from the chl max was consumed by aphotic bacterial communities over the relatively short, one-week incubation. In contrast, 65% of the dissolved organic nitrogen (DON) added as an integral part of the ice-algal DOM was consumed, but none of the DON supplied with chl max water was labile. This study underscores the importance of considering DOM sources when investigating or predicting changes in carbon and nitrogen cycling within the Amundsen Sea. Text Amundsen Sea Antarc* Antarctic Antarctica ice algae W&M ScholarWorks Antarctic Austral Amundsen Sea Elementa: Science of the Anthropocene 3 |
institution |
Open Polar |
collection |
W&M ScholarWorks |
op_collection_id |
ftwilliammarycol |
language |
unknown |
topic |
Physical Sciences Peer-Reviewed Articles Aquaculture and Fisheries |
spellingShingle |
Physical Sciences Peer-Reviewed Articles Aquaculture and Fisheries Sipler, RE Connelly, TL Bioavailability of surface dissolved organic matter to aphotic bacterial communities in the Amundsen Sea Polynya, Antarctica |
topic_facet |
Physical Sciences Peer-Reviewed Articles Aquaculture and Fisheries |
description |
Antarctic seas, and particularly the Amundsen Sea Polynya, are some of the most productive oceanic regions on Earth. Ice-algal production during austral spring is followed by open-water pelagic production later in the season. Although ice-free growth accounts for a greater percentage of the annual net primary production, ice algae provide an important source of nutrients to organisms throughout the water column and benthos in areas and seasons when open-water production is insignificant. The objectives of this study were to assess the bioavailability of dissolved organic matter (DOM), sourced from ice algae or the chlorophyll maximum (chl max), to marine bacterioplankton and to determine the fate of carbon within these different DOM pools, including loss to respiration, incorporation into bacterial biomass and retention within the DOM pool itself. Nutrient concentrations and bacterial abundance, production, and cell volume were monitored during a 7-day bioassay study involving four treatments conducted shipboard in the Amundsen Sea Polynya, Antarctica. The greatest response in bacterial abundance and activity was observed when ice-algal meltwater was supplied to aphotic zone bacterioplankton collected from 170-m depth. However, bacterial growth efficiency was higher (24%) when chl max water was supplied to the same aphotic zone bacterial community compared to the bacterial growth efficiency of the ice-algal treatment (15%). Approximately 15% of dissolved organic carbon (DOC) from the ice-algal source and 18% from the chl max was consumed by aphotic bacterial communities over the relatively short, one-week incubation. In contrast, 65% of the dissolved organic nitrogen (DON) added as an integral part of the ice-algal DOM was consumed, but none of the DON supplied with chl max water was labile. This study underscores the importance of considering DOM sources when investigating or predicting changes in carbon and nitrogen cycling within the Amundsen Sea. |
format |
Text |
author |
Sipler, RE Connelly, TL |
author_facet |
Sipler, RE Connelly, TL |
author_sort |
Sipler, RE |
title |
Bioavailability of surface dissolved organic matter to aphotic bacterial communities in the Amundsen Sea Polynya, Antarctica |
title_short |
Bioavailability of surface dissolved organic matter to aphotic bacterial communities in the Amundsen Sea Polynya, Antarctica |
title_full |
Bioavailability of surface dissolved organic matter to aphotic bacterial communities in the Amundsen Sea Polynya, Antarctica |
title_fullStr |
Bioavailability of surface dissolved organic matter to aphotic bacterial communities in the Amundsen Sea Polynya, Antarctica |
title_full_unstemmed |
Bioavailability of surface dissolved organic matter to aphotic bacterial communities in the Amundsen Sea Polynya, Antarctica |
title_sort |
bioavailability of surface dissolved organic matter to aphotic bacterial communities in the amundsen sea polynya, antarctica |
publisher |
W&M ScholarWorks |
publishDate |
2015 |
url |
https://scholarworks.wm.edu/vimsarticles/835 https://scholarworks.wm.edu/context/vimsarticles/article/1835/viewcontent/67_674_1_SM.pdf |
geographic |
Antarctic Austral Amundsen Sea |
geographic_facet |
Antarctic Austral Amundsen Sea |
genre |
Amundsen Sea Antarc* Antarctic Antarctica ice algae |
genre_facet |
Amundsen Sea Antarc* Antarctic Antarctica ice algae |
op_source |
VIMS Articles |
op_relation |
https://scholarworks.wm.edu/vimsarticles/835 doi: 10.12952/journal.elementa.000060 https://scholarworks.wm.edu/context/vimsarticles/article/1835/viewcontent/67_674_1_SM.pdf |
op_doi |
https://doi.org/10.12952/journal.elementa.000060 |
container_title |
Elementa: Science of the Anthropocene |
container_volume |
3 |
_version_ |
1768380287371182080 |