Using High-Resolution Glider Data and Biogeochemical Modeling to Investigate Phytoplankton Variability in the Ross Sea

As Earth’s climate changes, polar environments experience a disproportionate share of extreme shifts. Because the Ross Sea shelf has the highest annual productivity of any Antarctic continental shelf, this region is of particular interest when striving to characterize current and future changes in A...

Full description

Bibliographic Details
Main Author: Kaufman, Daniel Edward
Format: Text
Language:English
Published: W&M ScholarWorks 2017
Subjects:
Online Access:https://scholarworks.wm.edu/etd/1499449869
https://doi.org/10.21220/M2BK8V
https://scholarworks.wm.edu/context/etd/article/1117/viewcontent/Kaufman_vims_0261D_10015.pdf
Description
Summary:As Earth’s climate changes, polar environments experience a disproportionate share of extreme shifts. Because the Ross Sea shelf has the highest annual productivity of any Antarctic continental shelf, this region is of particular interest when striving to characterize current and future changes in Antarctic systems. However, understanding of mesoscale variability of biogeochemical patterns in the Ross Sea and how this variability affects assemblage dynamics is incomplete. Furthermore, it is unknown how the Ross Sea may respond to projected warming, reduced summer sea ice concentrations, and shallower mixed layers during the next century. to investigate these dynamics and explore their consequences over the next century, high-resolution glider observations were analyzed and used in conjunction with a one-dimensional, data-assimilative biogeochemical-modeling framework. An analysis of glider observations from two latitudinal sections in the Ross Sea characterized mesoscale variability associated with the phytoplankton bloom and highlighted potential mechanisms driving change in the assemblage. In particular, an observed increase in the ratio of carbon to chlorophyll (C:Chl) suggested a marked transition from a phytoplankton assemblage dominated by Phaeocystis antarctica- to one dominated by diatoms. The expected control of phytoplankton variability by Modified Circumpolar Deep Water and mixed layer depth were shown to be insignificant relative to the effects of wind and sea surface temperature on the temporal/spatial scales measured by the glider. Additional glider measurements were used to force the Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification, which was adapted for use in the Ross Sea (MEDUSA-RS) to include both solitary and colonial forms of Phaeocystis antarctica. The impacts of climate-induced changes on Ross Sea phytoplankton were investigated with MEDUSA-RS using projections of physical drivers for mid- and late-21st century, and these experiments indicated increases of ...