The influence of fishmeal-free diets on microbial communities in Atlantic salmon Salmo salar recirculation aquaculture systems

© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied and Environmental Microbiology 82 (2016): 4470-4481, doi:10.1128/AEM.00902-16. Reliance on fishmeal as a primary protein source is among the...

Full description

Bibliographic Details
Published in:Applied and Environmental Microbiology
Main Authors: Schmidt, Victor T., Amaral-Zettler, Linda A., Davidson, John, Summerfelt, Steven, Good, Christopher
Format: Article in Journal/Newspaper
Language:English
Published: American Society for Microbiology 2016
Subjects:
Online Access:https://hdl.handle.net/1912/8251
id ftwhoas:oai:darchive.mblwhoilibrary.org:1912/8251
record_format openpolar
spelling ftwhoas:oai:darchive.mblwhoilibrary.org:1912/8251 2023-05-15T15:32:01+02:00 The influence of fishmeal-free diets on microbial communities in Atlantic salmon Salmo salar recirculation aquaculture systems Schmidt, Victor T. Amaral-Zettler, Linda A. Davidson, John Summerfelt, Steven Good, Christopher 2016-04-29 https://hdl.handle.net/1912/8251 en_US eng American Society for Microbiology https://doi.org/10.1128/AEM.00902-16 Applied and Environmental Microbiology 82 (2016): 4470-4481 https://hdl.handle.net/1912/8251 doi:10.1128/AEM.00902-16 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ CC-BY Applied and Environmental Microbiology 82 (2016): 4470-4481 doi:10.1128/AEM.00902-16 Article 2016 ftwhoas https://doi.org/10.1128/AEM.00902-16 2022-05-28T22:59:39Z © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied and Environmental Microbiology 82 (2016): 4470-4481, doi:10.1128/AEM.00902-16. Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters is not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market-size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water and biofilter media in each corresponding RAS unit. Our results provide the first data on how fish diet influences the RAS environment, and corroborates previous findings that diet has a clear influence on microbiome structure of the ... Article in Journal/Newspaper Atlantic salmon Salmo salar Woods Hole Scientific Community: WHOAS (Woods Hole Open Access Server) Applied and Environmental Microbiology 82 15 4470 4481
institution Open Polar
collection Woods Hole Scientific Community: WHOAS (Woods Hole Open Access Server)
op_collection_id ftwhoas
language English
description © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied and Environmental Microbiology 82 (2016): 4470-4481, doi:10.1128/AEM.00902-16. Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters is not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market-size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water and biofilter media in each corresponding RAS unit. Our results provide the first data on how fish diet influences the RAS environment, and corroborates previous findings that diet has a clear influence on microbiome structure of the ...
format Article in Journal/Newspaper
author Schmidt, Victor T.
Amaral-Zettler, Linda A.
Davidson, John
Summerfelt, Steven
Good, Christopher
spellingShingle Schmidt, Victor T.
Amaral-Zettler, Linda A.
Davidson, John
Summerfelt, Steven
Good, Christopher
The influence of fishmeal-free diets on microbial communities in Atlantic salmon Salmo salar recirculation aquaculture systems
author_facet Schmidt, Victor T.
Amaral-Zettler, Linda A.
Davidson, John
Summerfelt, Steven
Good, Christopher
author_sort Schmidt, Victor T.
title The influence of fishmeal-free diets on microbial communities in Atlantic salmon Salmo salar recirculation aquaculture systems
title_short The influence of fishmeal-free diets on microbial communities in Atlantic salmon Salmo salar recirculation aquaculture systems
title_full The influence of fishmeal-free diets on microbial communities in Atlantic salmon Salmo salar recirculation aquaculture systems
title_fullStr The influence of fishmeal-free diets on microbial communities in Atlantic salmon Salmo salar recirculation aquaculture systems
title_full_unstemmed The influence of fishmeal-free diets on microbial communities in Atlantic salmon Salmo salar recirculation aquaculture systems
title_sort influence of fishmeal-free diets on microbial communities in atlantic salmon salmo salar recirculation aquaculture systems
publisher American Society for Microbiology
publishDate 2016
url https://hdl.handle.net/1912/8251
genre Atlantic salmon
Salmo salar
genre_facet Atlantic salmon
Salmo salar
op_source Applied and Environmental Microbiology 82 (2016): 4470-4481
doi:10.1128/AEM.00902-16
op_relation https://doi.org/10.1128/AEM.00902-16
Applied and Environmental Microbiology 82 (2016): 4470-4481
https://hdl.handle.net/1912/8251
doi:10.1128/AEM.00902-16
op_rights Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
op_rightsnorm CC-BY
op_doi https://doi.org/10.1128/AEM.00902-16
container_title Applied and Environmental Microbiology
container_volume 82
container_issue 15
container_start_page 4470
op_container_end_page 4481
_version_ 1766362519784390656