Extreme climate events and individual heterogeneity shape life-history traits and population dynamics

Author Posting. © Ecological Society of America, 2015. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 85 (2015): 605–624, doi:10.1890/14-1834.1. Extreme climatic condit...

Full description

Bibliographic Details
Published in:Ecological Monographs
Main Authors: Jenouvrier, Stephanie, Peron, Clara, Weimerskirch, Henri
Format: Article in Journal/Newspaper
Language:English
Published: Ecological Society of America 2015
Subjects:
Online Access:https://hdl.handle.net/1912/7699
Description
Summary:Author Posting. © Ecological Society of America, 2015. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 85 (2015): 605–624, doi:10.1890/14-1834.1. Extreme climatic conditions and their ecological impacts are currently emerging as critical features of climate change. We studied extreme sea ice condition (ESIC) and found it impacts both life-history traits and population dynamics of an Antarctic seabird well beyond ordinary variability. The Southern Fulmar (Fulmarus glacialoides) is an ice-dependent seabird, and individuals forage near the ice edge. During an extreme unfavorable year (when sea ice area is reduced and distance between ice edge and colony is high), observed foraging trips were greater in distance and duration. As a result, adults brought less food to their chicks, which fledged in the poorest body condition. During such unfavorable years, breeding success was extremely low and population growth rate (λ) was greatly reduced. The opposite pattern occurred during extreme favorable years. Previous breeding status had a strong influence on life-history traits and population dynamics, and their responses to extreme conditions. Successful breeders had a higher chance of breeding and raising their chick successfully during the following breeding season as compared to other breeding stages, regardless of environmental conditions. Consequently, they coped better with unfavorable ESIC. The effect of change in successful breeder vital rates on λ was greater than for other stages' vital rates, except for pre-breeder recruitment probabilities, which most affected λ. For environments characterized by ordinary sea ice conditions, interindividual differences were more likely to persist over the life of individuals and randomness in individual pathways was low, suggesting individual heterogeneity in vital rates arising from innate or acquired phenotypic traits. Additionally, unfavorable ...