Carbon dynamics in the western Arctic Ocean : insights from full-depth carbon isotope profiles of DIC, DOC, and POC

© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 9 (2012): 1217-1224, doi:10.5194/bg-9-1217-2012. Arctic warming is projected to continue throughout the coming century. Yet, our curr...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Griffith, David R., McNichol, Ann P., Xu, Li, McLaughlin, Fiona A., Macdonald, Robie W., Brown, Kristina A., Eglinton, Timothy I.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications on behalf of the European Geosciences Union 2012
Subjects:
Online Access:https://hdl.handle.net/1912/5155
Description
Summary:© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 9 (2012): 1217-1224, doi:10.5194/bg-9-1217-2012. Arctic warming is projected to continue throughout the coming century. Yet, our currently limited understanding of the Arctic Ocean carbon cycle hinders our ability to predict how changing conditions will affect local Arctic ecosystems, regional carbon budgets, and global climate. We present here the first set of concurrent, full-depth, dual-isotope profiles for dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and suspended particulate organic carbon (POCsusp) at two sites in the Canada Basin of the Arctic Ocean. The carbon isotope composition of sinking and suspended POC in the Arctic contrasts strongly with open ocean Atlantic and Pacific sites, pointing to a combination of inputs to Arctic POCsusp at depth, including surface-derived organic carbon (OC), sorbed/advected OC, and OC derived from in situ DIC fixation. The latter process appears to be particularly important at intermediate depths, where mass balance calculations suggest that OC derived from in situ DIC fixation contributes up to 22% of POCsusp. As in other oceans, surface-derived OC is still a dominant source to Arctic POCsusp. Yet, we suggest that significantly smaller vertical POC fluxes in the Canada Basin make it possible to see evidence of DIC fixation in the POCsusp pool even at the bulk isotope level. The 2008 JOIS hydrographic program was supported by Fisheries and Oceans Canada, the Canadian International Polar Year Office, and the US National Science Foundation (OPP-0424864; lead-PI Andrey Proshutinsky).