A Virtual Ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous underwater vehicles

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021. Autonomous underwater vehicles (AUVs) are an increasingly capable robotic platform, with embedded acou...

Full description

Bibliographic Details
Main Author: Bhatt, EeShan C.
Other Authors: Schmidt. Henrik
Format: Thesis
Language:English
Published: Massachusetts Institute of Technology and Woods Hole Oceanographic Institution 2021
Subjects:
Online Access:https://hdl.handle.net/1912/27309
id ftwhoas:oai:darchive.mblwhoilibrary.org:1912/27309
record_format openpolar
spelling ftwhoas:oai:darchive.mblwhoilibrary.org:1912/27309 2023-05-15T15:15:21+02:00 A Virtual Ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous underwater vehicles Bhatt, EeShan C. Schmidt. Henrik 2021-09 https://hdl.handle.net/1912/27309 en_US eng Massachusetts Institute of Technology and Woods Hole Oceanographic Institution WHOI Theses https://hdl.handle.net/1912/27309 doi:10.1575/1912/27309 doi:10.1575/1912/27309 Beaufort Lens GPS-denied underwater navigation Marine robotics Thesis 2021 ftwhoas https://doi.org/10.1575/1912/27309 2022-10-22T22:57:11Z Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021. Autonomous underwater vehicles (AUVs) are an increasingly capable robotic platform, with embedded acoustic sensing to facilitate navigation, communication, and collaboration. The global positioning system (GPS), ubiquitous for air- and terrestrial-based drones, cannot position a submerged AUV. Current methods for acoustic underwater navigation employ a deterministic sound speed to convert recorded travel time into range. In acoustically complex propagation environments, however, accurate navigation is predicated on how the sound speed structure affects propagation. The Arctic’s Beaufort Gyre provides an excellent case study for this relationship via the Beaufort Lens, a recently observed influx of warm Pacific water that forms a widespread yet variable sound speed lens throughout the gyre. At short ranges, the lens intensifies multipath propagation and creates a dramatic shadow zone, deteriorating acoustic communication and navigation performance. The Arctic also poses the additional operational challenge of an ice-covered, GPSdenied environment. This dissertation demonstrates a framework for a physics-based, model-aided, real-time conversion of recorded travel time into range—the first of its kind—which was essential to the successful AUV deployment and recovery in the Beaufort Sea, in March 2020. There are three nominal steps. First, we investigate the spatio-temporal variability of the Beaufort Lens. Second, we design a human-in-the-loop graphical decision-making framework to encode desired sound speed profile information into a lightweight, digital acoustic message for onboard navigation and communication. Lastly, we embed a stochastic, ray-based prediction of the group velocity as a function of extrapolated source and receiver locations. This framework is further validated by transmissions among GPS-aided modem ... Thesis Arctic Beaufort Sea Woods Hole Scientific Community: WHOAS (Woods Hole Open Access Server) Arctic Pacific
institution Open Polar
collection Woods Hole Scientific Community: WHOAS (Woods Hole Open Access Server)
op_collection_id ftwhoas
language English
topic Beaufort Lens
GPS-denied underwater navigation
Marine robotics
spellingShingle Beaufort Lens
GPS-denied underwater navigation
Marine robotics
Bhatt, EeShan C.
A Virtual Ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous underwater vehicles
topic_facet Beaufort Lens
GPS-denied underwater navigation
Marine robotics
description Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021. Autonomous underwater vehicles (AUVs) are an increasingly capable robotic platform, with embedded acoustic sensing to facilitate navigation, communication, and collaboration. The global positioning system (GPS), ubiquitous for air- and terrestrial-based drones, cannot position a submerged AUV. Current methods for acoustic underwater navigation employ a deterministic sound speed to convert recorded travel time into range. In acoustically complex propagation environments, however, accurate navigation is predicated on how the sound speed structure affects propagation. The Arctic’s Beaufort Gyre provides an excellent case study for this relationship via the Beaufort Lens, a recently observed influx of warm Pacific water that forms a widespread yet variable sound speed lens throughout the gyre. At short ranges, the lens intensifies multipath propagation and creates a dramatic shadow zone, deteriorating acoustic communication and navigation performance. The Arctic also poses the additional operational challenge of an ice-covered, GPSdenied environment. This dissertation demonstrates a framework for a physics-based, model-aided, real-time conversion of recorded travel time into range—the first of its kind—which was essential to the successful AUV deployment and recovery in the Beaufort Sea, in March 2020. There are three nominal steps. First, we investigate the spatio-temporal variability of the Beaufort Lens. Second, we design a human-in-the-loop graphical decision-making framework to encode desired sound speed profile information into a lightweight, digital acoustic message for onboard navigation and communication. Lastly, we embed a stochastic, ray-based prediction of the group velocity as a function of extrapolated source and receiver locations. This framework is further validated by transmissions among GPS-aided modem ...
author2 Schmidt. Henrik
format Thesis
author Bhatt, EeShan C.
author_facet Bhatt, EeShan C.
author_sort Bhatt, EeShan C.
title A Virtual Ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous underwater vehicles
title_short A Virtual Ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous underwater vehicles
title_full A Virtual Ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous underwater vehicles
title_fullStr A Virtual Ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous underwater vehicles
title_full_unstemmed A Virtual Ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous underwater vehicles
title_sort virtual ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous underwater vehicles
publisher Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
publishDate 2021
url https://hdl.handle.net/1912/27309
geographic Arctic
Pacific
geographic_facet Arctic
Pacific
genre Arctic
Beaufort Sea
genre_facet Arctic
Beaufort Sea
op_source doi:10.1575/1912/27309
op_relation WHOI Theses
https://hdl.handle.net/1912/27309
doi:10.1575/1912/27309
op_doi https://doi.org/10.1575/1912/27309
_version_ 1766345725063462912