The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean

Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015920, doi:10.1029/2019JC01592...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Charette, Matthew A., Kipp, Lauren, Jensen, Laramie T., Dabrowski, Jessica S., Whitmore, Laura M., Fitzsimmons, Jessica N., Williford, Tatiana, Ulfsbo, Adam, Jones, Elizabeth M., Bundy, Randelle M., Vivancos, Sebastian M., Pahnke, Katharina, John, Seth G., Xiang, Yang, Hatta, Mariko, Petrova, Mariia V., Heimbürger, Lars-Eric, Bauch, Dorothea, Newton, Robert, Pasqualini, Angelica, Agather, Alison, Amon, Rainer M. W., Anderson, Robert F., Andersson, Per S., Benner, Ronald, Bowman, Katlin, Edwards, R. Lawrence, Gdaniec, Sandra, Gerringa, Loes J. A., González, Aridane G., Granskog, Mats A., Haley, Brian, Hammerschmidt, Chad R., Hansell, Dennis A., Henderson, Paul B., Kadko, David C., Kaiser, Karl, Laan, Patrick, Lam, Phoebe J., Lamborg, Carl H., Levier, Martin, Li, Xianglei, Margolin, Andrew R., Measures, Christopher I., Middag, Rob, Millero, Frank J., Moore, Willard S., Paffrath, Ronja, Planquette, Helene, Rabe, Benjamin
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2020
Subjects:
Ice
Online Access:https://hdl.handle.net/1912/26070
id ftwhoas:oai:darchive.mblwhoilibrary.org:1912/26070
record_format openpolar
institution Open Polar
collection Woods Hole Scientific Community: WHOAS (Woods Hole Open Access Server)
op_collection_id ftwhoas
language unknown
topic Arctic Ocean
Transpolar Drift
trace elements
carbon
nutrients
GEOTRACES]
spellingShingle Arctic Ocean
Transpolar Drift
trace elements
carbon
nutrients
GEOTRACES]
Charette, Matthew A.
Kipp, Lauren
Jensen, Laramie T.
Dabrowski, Jessica S.
Whitmore, Laura M.
Fitzsimmons, Jessica N.
Williford, Tatiana
Ulfsbo, Adam
Jones, Elizabeth M.
Bundy, Randelle M.
Vivancos, Sebastian M.
Pahnke, Katharina
John, Seth G.
Xiang, Yang
Hatta, Mariko
Petrova, Mariia V.
Heimbürger, Lars-Eric
Bauch, Dorothea
Newton, Robert
Pasqualini, Angelica
Agather, Alison
Amon, Rainer M. W.
Anderson, Robert F.
Andersson, Per S.
Benner, Ronald
Bowman, Katlin
Edwards, R. Lawrence
Gdaniec, Sandra
Gerringa, Loes J. A.
González, Aridane G.
Granskog, Mats A.
Haley, Brian
Hammerschmidt, Chad R.
Hansell, Dennis A.
Henderson, Paul B.
Kadko, David C.
Kaiser, Karl
Laan, Patrick
Lam, Phoebe J.
Lamborg, Carl H.
Levier, Martin
Li, Xianglei
Margolin, Andrew R.
Measures, Christopher I.
Middag, Rob
Millero, Frank J.
Moore, Willard S.
Paffrath, Ronja
Planquette, Helene
Rabe, Benjamin
The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean
topic_facet Arctic Ocean
Transpolar Drift
trace elements
carbon
nutrients
GEOTRACES]
description Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015920, doi:10.1029/2019JC015920. A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean. Funding for Arctic GEOTRACES was provided by the U.S. National Science Foundation, Swedish Research Council Formas, French Agence Nationale de la Recherche and LabexMER, ...
format Article in Journal/Newspaper
author Charette, Matthew A.
Kipp, Lauren
Jensen, Laramie T.
Dabrowski, Jessica S.
Whitmore, Laura M.
Fitzsimmons, Jessica N.
Williford, Tatiana
Ulfsbo, Adam
Jones, Elizabeth M.
Bundy, Randelle M.
Vivancos, Sebastian M.
Pahnke, Katharina
John, Seth G.
Xiang, Yang
Hatta, Mariko
Petrova, Mariia V.
Heimbürger, Lars-Eric
Bauch, Dorothea
Newton, Robert
Pasqualini, Angelica
Agather, Alison
Amon, Rainer M. W.
Anderson, Robert F.
Andersson, Per S.
Benner, Ronald
Bowman, Katlin
Edwards, R. Lawrence
Gdaniec, Sandra
Gerringa, Loes J. A.
González, Aridane G.
Granskog, Mats A.
Haley, Brian
Hammerschmidt, Chad R.
Hansell, Dennis A.
Henderson, Paul B.
Kadko, David C.
Kaiser, Karl
Laan, Patrick
Lam, Phoebe J.
Lamborg, Carl H.
Levier, Martin
Li, Xianglei
Margolin, Andrew R.
Measures, Christopher I.
Middag, Rob
Millero, Frank J.
Moore, Willard S.
Paffrath, Ronja
Planquette, Helene
Rabe, Benjamin
author_facet Charette, Matthew A.
Kipp, Lauren
Jensen, Laramie T.
Dabrowski, Jessica S.
Whitmore, Laura M.
Fitzsimmons, Jessica N.
Williford, Tatiana
Ulfsbo, Adam
Jones, Elizabeth M.
Bundy, Randelle M.
Vivancos, Sebastian M.
Pahnke, Katharina
John, Seth G.
Xiang, Yang
Hatta, Mariko
Petrova, Mariia V.
Heimbürger, Lars-Eric
Bauch, Dorothea
Newton, Robert
Pasqualini, Angelica
Agather, Alison
Amon, Rainer M. W.
Anderson, Robert F.
Andersson, Per S.
Benner, Ronald
Bowman, Katlin
Edwards, R. Lawrence
Gdaniec, Sandra
Gerringa, Loes J. A.
González, Aridane G.
Granskog, Mats A.
Haley, Brian
Hammerschmidt, Chad R.
Hansell, Dennis A.
Henderson, Paul B.
Kadko, David C.
Kaiser, Karl
Laan, Patrick
Lam, Phoebe J.
Lamborg, Carl H.
Levier, Martin
Li, Xianglei
Margolin, Andrew R.
Measures, Christopher I.
Middag, Rob
Millero, Frank J.
Moore, Willard S.
Paffrath, Ronja
Planquette, Helene
Rabe, Benjamin
author_sort Charette, Matthew A.
title The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean
title_short The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean
title_full The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean
title_fullStr The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean
title_full_unstemmed The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean
title_sort transpolar drift as a source of riverine and shelf-derived trace elements to the central arctic ocean
publisher American Geophysical Union
publishDate 2020
url https://hdl.handle.net/1912/26070
long_lat ENVELOPE(43.000,43.000,73.500,73.500)
geographic Arctic
Arctic Ocean
Central Basin
geographic_facet Arctic
Arctic Ocean
Central Basin
genre Arctic
Arctic
Arctic Ocean
Fram Strait
Ice
laptev
North Atlantic
permafrost
genre_facet Arctic
Arctic
Arctic Ocean
Fram Strait
Ice
laptev
North Atlantic
permafrost
op_source Charette, M. A., Kipp, L. E., Jensen, L. T., Dabrowski, J. S., Whitmore, L. M., Fitzsimmons, J. N., Williford, T., Ulfsbo, A., Jones, E., Bundy, R. M., Vivancos, S. M., Pahnke, K., John, S. G., Xiang, Y., Hatta, M., Petrova, M., V., Heimburger-Boavida, L., Bauch, D., Newton, R., Pasqualini, A., Agather, A. M., Amon, R. M. W., Anderson, R. F., Andersson, P. S., Benner, R., Bowman, K. L., Edwards, R. L., Gdaniec, S., Gerringa, L. J. A., Gonzalez, A. G., Granskog, M., Haley, B., Hammerschmidt, C. R., Hansell, D. A., Henderson, P. B., Kadko, D. C., Kaiser, K., Laan, P., Lam, P. J., Lamborg, C. H., Levier, M., Li, X., Margolin, A. R., Measures, C., Middag, R., Millero, F. J., Moore, W. S., Paffrath, R., Planquette, H., Rabe, B., Reader, H., Rember, R., Rijkenberg, M. J. A., Roy-Barman, M., van der Loeff, M. R., Saito, M., Schauer, U., Schlosser, P., Sherrell, R. M., Shiller, A. M., Slagter, H., Sonke, J. E., Stedmon, C., Woosley, R. J., Valk, O., van Ooijen, J., & Zhang, R. (2020). The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean. Journal of Geophysical Research: Oceans, 125(5), e2019JC015920.
doi:10.1029/2019JC015920
op_relation https://doi.org/10.1029/2019JC015920
Charette, M. A., Kipp, L. E., Jensen, L. T., Dabrowski, J. S., Whitmore, L. M., Fitzsimmons, J. N., Williford, T., Ulfsbo, A., Jones, E., Bundy, R. M., Vivancos, S. M., Pahnke, K., John, S. G., Xiang, Y., Hatta, M., Petrova, M., V., Heimburger-Boavida, L., Bauch, D., Newton, R., Pasqualini, A., Agather, A. M., Amon, R. M. W., Anderson, R. F., Andersson, P. S., Benner, R., Bowman, K. L., Edwards, R. L., Gdaniec, S., Gerringa, L. J. A., Gonzalez, A. G., Granskog, M., Haley, B., Hammerschmidt, C. R., Hansell, D. A., Henderson, P. B., Kadko, D. C., Kaiser, K., Laan, P., Lam, P. J., Lamborg, C. H., Levier, M., Li, X., Margolin, A. R., Measures, C., Middag, R., Millero, F. J., Moore, W. S., Paffrath, R., Planquette, H., Rabe, B., Reader, H., Rember, R., Rijkenberg, M. J. A., Roy-Barman, M., van der Loeff, M. R., Saito, M., Schauer, U., Schlosser, P., Sherrell, R. M., Shiller, A. M., Slagter, H., Sonke, J. E., Stedmon, C., Woosley, R. J., Valk, O., van Ooijen, J., & Zhang, R. (2020). The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean. Journal of Geophysical Research: Oceans, 125(5), e2019JC015920.
https://hdl.handle.net/1912/26070
doi:10.1029/2019JC015920
op_doi https://doi.org/10.1029/2019JC015920
container_title Journal of Geophysical Research: Oceans
container_volume 125
container_issue 5
_version_ 1766302386575376384
spelling ftwhoas:oai:darchive.mblwhoilibrary.org:1912/26070 2023-05-15T14:28:13+02:00 The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean Charette, Matthew A. Kipp, Lauren Jensen, Laramie T. Dabrowski, Jessica S. Whitmore, Laura M. Fitzsimmons, Jessica N. Williford, Tatiana Ulfsbo, Adam Jones, Elizabeth M. Bundy, Randelle M. Vivancos, Sebastian M. Pahnke, Katharina John, Seth G. Xiang, Yang Hatta, Mariko Petrova, Mariia V. Heimbürger, Lars-Eric Bauch, Dorothea Newton, Robert Pasqualini, Angelica Agather, Alison Amon, Rainer M. W. Anderson, Robert F. Andersson, Per S. Benner, Ronald Bowman, Katlin Edwards, R. Lawrence Gdaniec, Sandra Gerringa, Loes J. A. González, Aridane G. Granskog, Mats A. Haley, Brian Hammerschmidt, Chad R. Hansell, Dennis A. Henderson, Paul B. Kadko, David C. Kaiser, Karl Laan, Patrick Lam, Phoebe J. Lamborg, Carl H. Levier, Martin Li, Xianglei Margolin, Andrew R. Measures, Christopher I. Middag, Rob Millero, Frank J. Moore, Willard S. Paffrath, Ronja Planquette, Helene Rabe, Benjamin 2020-04-08 https://hdl.handle.net/1912/26070 unknown American Geophysical Union https://doi.org/10.1029/2019JC015920 Charette, M. A., Kipp, L. E., Jensen, L. T., Dabrowski, J. S., Whitmore, L. M., Fitzsimmons, J. N., Williford, T., Ulfsbo, A., Jones, E., Bundy, R. M., Vivancos, S. M., Pahnke, K., John, S. G., Xiang, Y., Hatta, M., Petrova, M., V., Heimburger-Boavida, L., Bauch, D., Newton, R., Pasqualini, A., Agather, A. M., Amon, R. M. W., Anderson, R. F., Andersson, P. S., Benner, R., Bowman, K. L., Edwards, R. L., Gdaniec, S., Gerringa, L. J. A., Gonzalez, A. G., Granskog, M., Haley, B., Hammerschmidt, C. R., Hansell, D. A., Henderson, P. B., Kadko, D. C., Kaiser, K., Laan, P., Lam, P. J., Lamborg, C. H., Levier, M., Li, X., Margolin, A. R., Measures, C., Middag, R., Millero, F. J., Moore, W. S., Paffrath, R., Planquette, H., Rabe, B., Reader, H., Rember, R., Rijkenberg, M. J. A., Roy-Barman, M., van der Loeff, M. R., Saito, M., Schauer, U., Schlosser, P., Sherrell, R. M., Shiller, A. M., Slagter, H., Sonke, J. E., Stedmon, C., Woosley, R. J., Valk, O., van Ooijen, J., & Zhang, R. (2020). The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean. Journal of Geophysical Research: Oceans, 125(5), e2019JC015920. https://hdl.handle.net/1912/26070 doi:10.1029/2019JC015920 Charette, M. A., Kipp, L. E., Jensen, L. T., Dabrowski, J. S., Whitmore, L. M., Fitzsimmons, J. N., Williford, T., Ulfsbo, A., Jones, E., Bundy, R. M., Vivancos, S. M., Pahnke, K., John, S. G., Xiang, Y., Hatta, M., Petrova, M., V., Heimburger-Boavida, L., Bauch, D., Newton, R., Pasqualini, A., Agather, A. M., Amon, R. M. W., Anderson, R. F., Andersson, P. S., Benner, R., Bowman, K. L., Edwards, R. L., Gdaniec, S., Gerringa, L. J. A., Gonzalez, A. G., Granskog, M., Haley, B., Hammerschmidt, C. R., Hansell, D. A., Henderson, P. B., Kadko, D. C., Kaiser, K., Laan, P., Lam, P. J., Lamborg, C. H., Levier, M., Li, X., Margolin, A. R., Measures, C., Middag, R., Millero, F. J., Moore, W. S., Paffrath, R., Planquette, H., Rabe, B., Reader, H., Rember, R., Rijkenberg, M. J. A., Roy-Barman, M., van der Loeff, M. R., Saito, M., Schauer, U., Schlosser, P., Sherrell, R. M., Shiller, A. M., Slagter, H., Sonke, J. E., Stedmon, C., Woosley, R. J., Valk, O., van Ooijen, J., & Zhang, R. (2020). The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean. Journal of Geophysical Research: Oceans, 125(5), e2019JC015920. doi:10.1029/2019JC015920 Arctic Ocean Transpolar Drift trace elements carbon nutrients GEOTRACES] Article 2020 ftwhoas https://doi.org/10.1029/2019JC015920 2022-05-28T23:03:46Z Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015920, doi:10.1029/2019JC015920. A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean. Funding for Arctic GEOTRACES was provided by the U.S. National Science Foundation, Swedish Research Council Formas, French Agence Nationale de la Recherche and LabexMER, ... Article in Journal/Newspaper Arctic Arctic Arctic Ocean Fram Strait Ice laptev North Atlantic permafrost Woods Hole Scientific Community: WHOAS (Woods Hole Open Access Server) Arctic Arctic Ocean Central Basin ENVELOPE(43.000,43.000,73.500,73.500) Journal of Geophysical Research: Oceans 125 5