Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP)

Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(6), (2019): 3490-3507, doi:10.1029/2018JC014675. Of...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Overduin, Pier Paul, Schneider von Deimling, T., Miesner, Frederieke, Grigoriev, Mikhail N., Ruppel, Carolyn D., Vasiliev, Alexander, Lantuit, Hugues, Juhls, Bennet, Westermann, Sebastian
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2019
Subjects:
Ice
Online Access:https://hdl.handle.net/1912/24566
id ftwhoas:oai:darchive.mblwhoilibrary.org:1912/24566
record_format openpolar
spelling ftwhoas:oai:darchive.mblwhoilibrary.org:1912/24566 2023-05-15T14:25:38+02:00 Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP) Overduin, Pier Paul Schneider von Deimling, T. Miesner, Frederieke Grigoriev, Mikhail N. Ruppel, Carolyn D. Vasiliev, Alexander Lantuit, Hugues Juhls, Bennet Westermann, Sebastian 2019-04-17 https://hdl.handle.net/1912/24566 unknown American Geophysical Union https://doi.org/10.1029/2018JC014675 Overduin, P. P., von Deimling, T. S., Miesner, F., Grigoriev, M. N., Ruppel, C., Vasiliev, A., Lantuit, H., Juhls, B., & Westermann, S. (2019). Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP). Journal of Geophysical Research-Oceans, 124(6), 3490-3507. https://hdl.handle.net/1912/24566 doi:10.1029/2018JC014675 Overduin, P. P., von Deimling, T. S., Miesner, F., Grigoriev, M. N., Ruppel, C., Vasiliev, A., Lantuit, H., Juhls, B., & Westermann, S. (2019). Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP). Journal of Geophysical Research-Oceans, 124(6), 3490-3507. doi:10.1029/2018JC014675 Submarine permafrost Arctic Cryosphere Sea level Article 2019 ftwhoas https://doi.org/10.1029/2018JC014675 2022-10-29T22:57:17Z Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(6), (2019): 3490-3507, doi:10.1029/2018JC014675. Offshore permafrost plays a role in the global climate system, but observations of permafrost thickness, state, and composition are limited to specific regions. The current global permafrost map shows potential offshore permafrost distribution based on bathymetry and global sea level rise. As a first‐order estimate, we employ a heat transfer model to calculate the subsurface temperature field. Our model uses dynamic upper boundary conditions that synthesize Earth System Model air temperature, ice mass distribution and thickness, and global sea level reconstruction and applies globally distributed geothermal heat flux as a lower boundary condition. Sea level reconstruction accounts for differences between marine and terrestrial sedimentation history. Sediment composition and pore water salinity are integrated in the model. Model runs for 450 ka for cross‐shelf transects were used to initialize the model for circumarctic modeling for the past 50 ka. Preindustrial submarine permafrost (i.e., cryotic sediment), modeled at 12.5‐km spatial resolution, lies beneath almost 2.5 ×106km2 of the Arctic shelf. Our simple modeling approach results in estimates of distribution of cryotic sediment that are similar to the current global map and recent seismically delineated permafrost distributions for the Beaufort and Kara seas, suggesting that sea level is a first‐order determinant for submarine permafrost distribution. Ice content and sediment thermal conductivity are also important for determining rates of permafrost thickness change. The model provides a consistent circumarctic approach to map submarine permafrost and to estimate the dynamics of permafrost in the past. Boundary condition data are available online via the ... Article in Journal/Newspaper Arctic arctic cryosphere Arctic Ice permafrost Woods Hole Scientific Community: WHOAS (Woods Hole Open Access Server) Arctic Journal of Geophysical Research: Oceans 124 6 3490 3507
institution Open Polar
collection Woods Hole Scientific Community: WHOAS (Woods Hole Open Access Server)
op_collection_id ftwhoas
language unknown
topic Submarine permafrost
Arctic
Cryosphere
Sea level
spellingShingle Submarine permafrost
Arctic
Cryosphere
Sea level
Overduin, Pier Paul
Schneider von Deimling, T.
Miesner, Frederieke
Grigoriev, Mikhail N.
Ruppel, Carolyn D.
Vasiliev, Alexander
Lantuit, Hugues
Juhls, Bennet
Westermann, Sebastian
Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP)
topic_facet Submarine permafrost
Arctic
Cryosphere
Sea level
description Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(6), (2019): 3490-3507, doi:10.1029/2018JC014675. Offshore permafrost plays a role in the global climate system, but observations of permafrost thickness, state, and composition are limited to specific regions. The current global permafrost map shows potential offshore permafrost distribution based on bathymetry and global sea level rise. As a first‐order estimate, we employ a heat transfer model to calculate the subsurface temperature field. Our model uses dynamic upper boundary conditions that synthesize Earth System Model air temperature, ice mass distribution and thickness, and global sea level reconstruction and applies globally distributed geothermal heat flux as a lower boundary condition. Sea level reconstruction accounts for differences between marine and terrestrial sedimentation history. Sediment composition and pore water salinity are integrated in the model. Model runs for 450 ka for cross‐shelf transects were used to initialize the model for circumarctic modeling for the past 50 ka. Preindustrial submarine permafrost (i.e., cryotic sediment), modeled at 12.5‐km spatial resolution, lies beneath almost 2.5 ×106km2 of the Arctic shelf. Our simple modeling approach results in estimates of distribution of cryotic sediment that are similar to the current global map and recent seismically delineated permafrost distributions for the Beaufort and Kara seas, suggesting that sea level is a first‐order determinant for submarine permafrost distribution. Ice content and sediment thermal conductivity are also important for determining rates of permafrost thickness change. The model provides a consistent circumarctic approach to map submarine permafrost and to estimate the dynamics of permafrost in the past. Boundary condition data are available online via the ...
format Article in Journal/Newspaper
author Overduin, Pier Paul
Schneider von Deimling, T.
Miesner, Frederieke
Grigoriev, Mikhail N.
Ruppel, Carolyn D.
Vasiliev, Alexander
Lantuit, Hugues
Juhls, Bennet
Westermann, Sebastian
author_facet Overduin, Pier Paul
Schneider von Deimling, T.
Miesner, Frederieke
Grigoriev, Mikhail N.
Ruppel, Carolyn D.
Vasiliev, Alexander
Lantuit, Hugues
Juhls, Bennet
Westermann, Sebastian
author_sort Overduin, Pier Paul
title Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP)
title_short Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP)
title_full Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP)
title_fullStr Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP)
title_full_unstemmed Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP)
title_sort submarine permafrost map in the arctic modeled using 1-d transient heat flux (supermap)
publisher American Geophysical Union
publishDate 2019
url https://hdl.handle.net/1912/24566
geographic Arctic
geographic_facet Arctic
genre Arctic
arctic cryosphere
Arctic
Ice
permafrost
genre_facet Arctic
arctic cryosphere
Arctic
Ice
permafrost
op_source Overduin, P. P., von Deimling, T. S., Miesner, F., Grigoriev, M. N., Ruppel, C., Vasiliev, A., Lantuit, H., Juhls, B., & Westermann, S. (2019). Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP). Journal of Geophysical Research-Oceans, 124(6), 3490-3507.
doi:10.1029/2018JC014675
op_relation https://doi.org/10.1029/2018JC014675
Overduin, P. P., von Deimling, T. S., Miesner, F., Grigoriev, M. N., Ruppel, C., Vasiliev, A., Lantuit, H., Juhls, B., & Westermann, S. (2019). Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP). Journal of Geophysical Research-Oceans, 124(6), 3490-3507.
https://hdl.handle.net/1912/24566
doi:10.1029/2018JC014675
op_doi https://doi.org/10.1029/2018JC014675
container_title Journal of Geophysical Research: Oceans
container_volume 124
container_issue 6
container_start_page 3490
op_container_end_page 3507
_version_ 1766298081456816128