Archaea dominate oxic subseafloor communities over multimillion-year time scales

© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). The definitive version was published in Vuillemin, A., Wankel, S. D., Coskun, Ö. K., Magritsch, T., Vargas, S., Estes, E. R., Spivack, A. J., Smith, D. C., Poc...

Full description

Bibliographic Details
Published in:Science Advances
Main Authors: Vuillemin, Aurèle, Wankel, Scott D., Coskun, Ömer K., Magritsch, Tobias, Vargas, Sergio, Estes, Emily R., Spivack, Arthur J., Smith, David C., Pockalny, Robert, Murray, Richard W., D'Hondt, Steven, Orsi, William D.
Format: Article in Journal/Newspaper
Language:unknown
Published: American Association for the Advancement of Science 2019
Subjects:
Online Access:https://hdl.handle.net/1912/24464
id ftwhoas:oai:darchive.mblwhoilibrary.org:1912/24464
record_format openpolar
spelling ftwhoas:oai:darchive.mblwhoilibrary.org:1912/24464 2023-05-15T17:35:22+02:00 Archaea dominate oxic subseafloor communities over multimillion-year time scales Vuillemin, Aurèle Wankel, Scott D. Coskun, Ömer K. Magritsch, Tobias Vargas, Sergio Estes, Emily R. Spivack, Arthur J. Smith, David C. Pockalny, Robert Murray, Richard W. D'Hondt, Steven Orsi, William D. 2019-06-19 https://hdl.handle.net/1912/24464 unknown American Association for the Advancement of Science https://doi.org/10.1126/sciadv.aaw4108 Vuillemin, A., Wankel, S. D., Coskun, Ö. K., Magritsch, T., Vargas, S., Estes, E. R., Spivack, A. J., Smith, D. C., Pockalny, R., Murray, R. W., D'Hondt, S., & Orsi, W. D. (2019). Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 5(6), eaaw4108. https://hdl.handle.net/1912/24464 doi:10.1126/sciadv.aaw4108 Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ CC-BY-NC-ND Vuillemin, A., Wankel, S. D., Coskun, Ö. K., Magritsch, T., Vargas, S., Estes, E. R., Spivack, A. J., Smith, D. C., Pockalny, R., Murray, R. W., D'Hondt, S., & Orsi, W. D. (2019). Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 5(6), eaaw4108. doi:10.1126/sciadv.aaw4108 Article 2019 ftwhoas https://doi.org/10.1126/sciadv.aaw4108 2022-05-28T23:03:12Z © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). The definitive version was published in Vuillemin, A., Wankel, S. D., Coskun, Ö. K., Magritsch, T., Vargas, S., Estes, E. R., Spivack, A. J., Smith, D. C., Pockalny, R., Murray, R. W., D'Hondt, S., & Orsi, W. D. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 5(6), (2019): eaaw4108, doi:10.1126/sciadv.aaw4108. Ammonia-oxidizing archaea (AOA) dominate microbial communities throughout oxic subseafloor sediment deposited over millions of years in the North Atlantic Ocean. Rates of nitrification correlated with the abundance of these dominant AOA populations, whose metabolism is characterized by ammonia oxidation, mixotrophic utilization of organic nitrogen, deamination, and the energetically efficient chemolithoautotrophic hydroxypropionate/hydroxybutyrate carbon fixation cycle. These AOA thus have the potential to couple mixotrophic and chemolithoautotrophic metabolism via mixotrophic deamination of organic nitrogen, followed by oxidation of the regenerated ammonia for additional energy to fuel carbon fixation. This metabolic feature likely reduces energy loss and improves AOA fitness under energy-starved, oxic conditions, thereby allowing them to outcompete other taxa for millions of years. This work was supported primarily by the Deutsche Forschungsgemeinschaft (DFG) project OR 417/1-1 granted to W.D.O. Preliminary work was supported by the Center for Dark Energy Biosphere Investigations project OCE-0939564 also granted to W.D.O. Publication of the manuscript was supported by the LMU Mentoring Program. The expedition was funded by the US National Science Foundation through grant NSF-OCE-1433150 to A.J.S, S.D., and R.P. R.W.M. led the expedition. This is a contribution of the Deep Carbon Observatory (DCO). S.D.W. acknowledges partial support from NASA Exobiology (NNX15AM04G). This is Center for Dark Energy Biosphere ... Article in Journal/Newspaper North Atlantic Woods Hole Scientific Community: WHOAS (Woods Hole Open Access Server) Science Advances 5 6 eaaw4108
institution Open Polar
collection Woods Hole Scientific Community: WHOAS (Woods Hole Open Access Server)
op_collection_id ftwhoas
language unknown
description © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). The definitive version was published in Vuillemin, A., Wankel, S. D., Coskun, Ö. K., Magritsch, T., Vargas, S., Estes, E. R., Spivack, A. J., Smith, D. C., Pockalny, R., Murray, R. W., D'Hondt, S., & Orsi, W. D. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 5(6), (2019): eaaw4108, doi:10.1126/sciadv.aaw4108. Ammonia-oxidizing archaea (AOA) dominate microbial communities throughout oxic subseafloor sediment deposited over millions of years in the North Atlantic Ocean. Rates of nitrification correlated with the abundance of these dominant AOA populations, whose metabolism is characterized by ammonia oxidation, mixotrophic utilization of organic nitrogen, deamination, and the energetically efficient chemolithoautotrophic hydroxypropionate/hydroxybutyrate carbon fixation cycle. These AOA thus have the potential to couple mixotrophic and chemolithoautotrophic metabolism via mixotrophic deamination of organic nitrogen, followed by oxidation of the regenerated ammonia for additional energy to fuel carbon fixation. This metabolic feature likely reduces energy loss and improves AOA fitness under energy-starved, oxic conditions, thereby allowing them to outcompete other taxa for millions of years. This work was supported primarily by the Deutsche Forschungsgemeinschaft (DFG) project OR 417/1-1 granted to W.D.O. Preliminary work was supported by the Center for Dark Energy Biosphere Investigations project OCE-0939564 also granted to W.D.O. Publication of the manuscript was supported by the LMU Mentoring Program. The expedition was funded by the US National Science Foundation through grant NSF-OCE-1433150 to A.J.S, S.D., and R.P. R.W.M. led the expedition. This is a contribution of the Deep Carbon Observatory (DCO). S.D.W. acknowledges partial support from NASA Exobiology (NNX15AM04G). This is Center for Dark Energy Biosphere ...
format Article in Journal/Newspaper
author Vuillemin, Aurèle
Wankel, Scott D.
Coskun, Ömer K.
Magritsch, Tobias
Vargas, Sergio
Estes, Emily R.
Spivack, Arthur J.
Smith, David C.
Pockalny, Robert
Murray, Richard W.
D'Hondt, Steven
Orsi, William D.
spellingShingle Vuillemin, Aurèle
Wankel, Scott D.
Coskun, Ömer K.
Magritsch, Tobias
Vargas, Sergio
Estes, Emily R.
Spivack, Arthur J.
Smith, David C.
Pockalny, Robert
Murray, Richard W.
D'Hondt, Steven
Orsi, William D.
Archaea dominate oxic subseafloor communities over multimillion-year time scales
author_facet Vuillemin, Aurèle
Wankel, Scott D.
Coskun, Ömer K.
Magritsch, Tobias
Vargas, Sergio
Estes, Emily R.
Spivack, Arthur J.
Smith, David C.
Pockalny, Robert
Murray, Richard W.
D'Hondt, Steven
Orsi, William D.
author_sort Vuillemin, Aurèle
title Archaea dominate oxic subseafloor communities over multimillion-year time scales
title_short Archaea dominate oxic subseafloor communities over multimillion-year time scales
title_full Archaea dominate oxic subseafloor communities over multimillion-year time scales
title_fullStr Archaea dominate oxic subseafloor communities over multimillion-year time scales
title_full_unstemmed Archaea dominate oxic subseafloor communities over multimillion-year time scales
title_sort archaea dominate oxic subseafloor communities over multimillion-year time scales
publisher American Association for the Advancement of Science
publishDate 2019
url https://hdl.handle.net/1912/24464
genre North Atlantic
genre_facet North Atlantic
op_source Vuillemin, A., Wankel, S. D., Coskun, Ö. K., Magritsch, T., Vargas, S., Estes, E. R., Spivack, A. J., Smith, D. C., Pockalny, R., Murray, R. W., D'Hondt, S., & Orsi, W. D. (2019). Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 5(6), eaaw4108.
doi:10.1126/sciadv.aaw4108
op_relation https://doi.org/10.1126/sciadv.aaw4108
Vuillemin, A., Wankel, S. D., Coskun, Ö. K., Magritsch, T., Vargas, S., Estes, E. R., Spivack, A. J., Smith, D. C., Pockalny, R., Murray, R. W., D'Hondt, S., & Orsi, W. D. (2019). Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 5(6), eaaw4108.
https://hdl.handle.net/1912/24464
doi:10.1126/sciadv.aaw4108
op_rights Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.1126/sciadv.aaw4108
container_title Science Advances
container_volume 5
container_issue 6
container_start_page eaaw4108
_version_ 1766134506847207424