Temporal stability of the neodymium isotope signature of the Holocene to glacial North Atlantic

Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA4102, doi:10.1029/2006PA001294. The neodymium isotopic compositi...

Full description

Bibliographic Details
Published in:Paleoceanography
Main Authors: van de Flierdt, Tina, Robinson, Laura F., Adkins, Jess F., Hemming, Sidney R., Goldstein, Steven L.
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2006
Subjects:
Online Access:https://hdl.handle.net/1912/1392
Description
Summary:Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA4102, doi:10.1029/2006PA001294. The neodymium isotopic composition of marine precipitates is increasingly recognized as a powerful tool for identifying changes in ocean circulation and mixing on million year to millennial time-scales. Unlike nutrient proxies such as δ13C or Cd/Ca, Nd isotopes are not thought to be altered in any significant way by biological processes, and thus can serve as a quasi-conservative water mass tracer. However, the application of Nd isotopes in understanding the role of thermohaline circulation in rapid climate change is currently hindered by the lack of direct constraints on the signature of the North Atlantic end-member through time. Here we present the first results of Nd isotopes measured in U-Th dated deep-sea corals from the New England seamounts in the northwest Atlantic Ocean. Our data are consistent with the conclusion that the Nd isotopic composition of North Atlantic deep and intermediate water has remained nearly constant through the last glacial cycle. The results address longstanding concerns that there may have been significant changes in the Nd isotopic composition of the North Atlantic end member during this interval, and substantiate the applicability of this novel tracer on millennial time-scales for palaeoceanography research. This study was supported by the Comer Science and Education Foundation and the Vetlesen Foundation Climate Center at L-DEO.