Cenozoic Antarctic climate evolution based on molecular and isotopic biomarker reconstructions from geological archives in the Ross Sea region

During the Cenozoic Era (the last 65 Ma), Antarctica’s climate has evolved from ice free conditions of the ‘Greenhouse world’, which at its peak (~ 55 Ma) supported near-tropical forests, to the ‘Icehouse’ climate of today with permanent ice sheets, and a very sparse macroflora. This long-term cooli...

Full description

Bibliographic Details
Main Author: Duncan, Bella
Other Authors: McKay, Rob, Naish, Tim, Bendle, James
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Victoria University of Wellington 2017
Subjects:
Online Access:http://researcharchive.vuw.ac.nz/handle/10063/6660
id ftvuwellington:oai:researcharchive.vuw.ac.nz:10063/6660
record_format openpolar
spelling ftvuwellington:oai:researcharchive.vuw.ac.nz:10063/6660 2023-08-15T12:37:48+02:00 Cenozoic Antarctic climate evolution based on molecular and isotopic biomarker reconstructions from geological archives in the Ross Sea region Duncan, Bella McKay, Rob Naish, Tim Bendle, James 2017 http://researcharchive.vuw.ac.nz/handle/10063/6660 en_NZ eng Victoria University of Wellington http://researcharchive.vuw.ac.nz/handle/10063/6660 Author Retains Copyright Antarctica Biomarkers Paleoclimate text Doctoral 2017 ftvuwellington 2023-07-25T17:27:14Z During the Cenozoic Era (the last 65 Ma), Antarctica’s climate has evolved from ice free conditions of the ‘Greenhouse world’, which at its peak (~ 55 Ma) supported near-tropical forests, to the ‘Icehouse’ climate of today with permanent ice sheets, and a very sparse macroflora. This long-term cooling trend is punctuated by a number of major, abrupt, and in some cases, irreversible climate transitions. Reconstructing past changes in vegetation, sea surface temperature, hydroclimate and the carbon cycle require robust geological proxies that in turn can provide insights into climatic thresholds and feedbacks that drove major transitions in the evolution of Antarctica’s ice sheets. Biomarkers allow climate and environmental proxy reconstructions for this region, where other more traditional paleoclimate methods are less suitable. This study has two aims. Firstly to assess the suitability and applicability of biomarkers in Antarctic sediments across a range of depositional settings and ages, and secondly to apply biomarker-based climate proxies to reconstruct environmental and climate conditions during key periods in the development of the Antarctic Ice Sheets. The distribution and abundances of n-alkanes are assessed in Oligocene and Miocene sediments from a terrestrial outcrop locality in the Transantarctic Mountains, and two glaciomarine sediment cores and an ice-distal deep marine core from the western Ross Sea. Comparisons are made with n-alkane distributions in Eocene glacial erratics and sedimentary rocks of the Mesozoic Beacon Supergroup, both likely sources of reworked material. A shift in dominant chain length from n-C₂₉ to n-C₂₇ occurs between the Late Eocene and Early Oligocene, considered a response to a significant climate cooling. Samples from glaciofluvial environments onshore, and subglacial and ice-proximal environments offshore display a reworked n-alkane distribution, characterised by low carbon preference index (CPI), high average chain length (ACL) and high n-C₂₉/n-C₂₇ values. Whereas, samples ... Doctoral or Postdoctoral Thesis Antarc* Antarctic Antarctica Ross Sea Victoria University of Wellington: ResearchArchive Antarctic Ross Sea The Antarctic Transantarctic Mountains
institution Open Polar
collection Victoria University of Wellington: ResearchArchive
op_collection_id ftvuwellington
language English
topic Antarctica
Biomarkers
Paleoclimate
spellingShingle Antarctica
Biomarkers
Paleoclimate
Duncan, Bella
Cenozoic Antarctic climate evolution based on molecular and isotopic biomarker reconstructions from geological archives in the Ross Sea region
topic_facet Antarctica
Biomarkers
Paleoclimate
description During the Cenozoic Era (the last 65 Ma), Antarctica’s climate has evolved from ice free conditions of the ‘Greenhouse world’, which at its peak (~ 55 Ma) supported near-tropical forests, to the ‘Icehouse’ climate of today with permanent ice sheets, and a very sparse macroflora. This long-term cooling trend is punctuated by a number of major, abrupt, and in some cases, irreversible climate transitions. Reconstructing past changes in vegetation, sea surface temperature, hydroclimate and the carbon cycle require robust geological proxies that in turn can provide insights into climatic thresholds and feedbacks that drove major transitions in the evolution of Antarctica’s ice sheets. Biomarkers allow climate and environmental proxy reconstructions for this region, where other more traditional paleoclimate methods are less suitable. This study has two aims. Firstly to assess the suitability and applicability of biomarkers in Antarctic sediments across a range of depositional settings and ages, and secondly to apply biomarker-based climate proxies to reconstruct environmental and climate conditions during key periods in the development of the Antarctic Ice Sheets. The distribution and abundances of n-alkanes are assessed in Oligocene and Miocene sediments from a terrestrial outcrop locality in the Transantarctic Mountains, and two glaciomarine sediment cores and an ice-distal deep marine core from the western Ross Sea. Comparisons are made with n-alkane distributions in Eocene glacial erratics and sedimentary rocks of the Mesozoic Beacon Supergroup, both likely sources of reworked material. A shift in dominant chain length from n-C₂₉ to n-C₂₇ occurs between the Late Eocene and Early Oligocene, considered a response to a significant climate cooling. Samples from glaciofluvial environments onshore, and subglacial and ice-proximal environments offshore display a reworked n-alkane distribution, characterised by low carbon preference index (CPI), high average chain length (ACL) and high n-C₂₉/n-C₂₇ values. Whereas, samples ...
author2 McKay, Rob
Naish, Tim
Bendle, James
format Doctoral or Postdoctoral Thesis
author Duncan, Bella
author_facet Duncan, Bella
author_sort Duncan, Bella
title Cenozoic Antarctic climate evolution based on molecular and isotopic biomarker reconstructions from geological archives in the Ross Sea region
title_short Cenozoic Antarctic climate evolution based on molecular and isotopic biomarker reconstructions from geological archives in the Ross Sea region
title_full Cenozoic Antarctic climate evolution based on molecular and isotopic biomarker reconstructions from geological archives in the Ross Sea region
title_fullStr Cenozoic Antarctic climate evolution based on molecular and isotopic biomarker reconstructions from geological archives in the Ross Sea region
title_full_unstemmed Cenozoic Antarctic climate evolution based on molecular and isotopic biomarker reconstructions from geological archives in the Ross Sea region
title_sort cenozoic antarctic climate evolution based on molecular and isotopic biomarker reconstructions from geological archives in the ross sea region
publisher Victoria University of Wellington
publishDate 2017
url http://researcharchive.vuw.ac.nz/handle/10063/6660
geographic Antarctic
Ross Sea
The Antarctic
Transantarctic Mountains
geographic_facet Antarctic
Ross Sea
The Antarctic
Transantarctic Mountains
genre Antarc*
Antarctic
Antarctica
Ross Sea
genre_facet Antarc*
Antarctic
Antarctica
Ross Sea
op_relation http://researcharchive.vuw.ac.nz/handle/10063/6660
op_rights Author Retains Copyright
_version_ 1774295976897413120