Amplification of holocene multicentennial climate forcing by mode transitions in North Atlantic overturning circulation.
Using a three-dimensional global climate model, we show that mode-transitions in North Atlantic deep-water production can provide an amplifying mechanism of relatively weak climate perturbations during the Holocene. Under pre-industrial boundary conditions, a freshwater forcing in the Labrador Sea p...
Published in: | Geophysical Research Letters |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2007
|
Subjects: | |
Online Access: | https://research.vu.nl/en/publications/ace3fde1-41fc-4418-b7d8-097ade782d88 https://doi.org/10.1029/2007GL030642 https://research.vu.nl/ws/files/2289162/204366.pdf |
Summary: | Using a three-dimensional global climate model, we show that mode-transitions in North Atlantic deep-water production can provide an amplifying mechanism of relatively weak climate perturbations during the Holocene. Under pre-industrial boundary conditions, a freshwater forcing in the Labrador Sea pushes the North Atlantic overturning circulation into a deterministically bistable regime, characterized by stochastic "on" and "off" switches in Labrador Sea convection. On a multicentennial time-scale these stochastic mode-transitions can be phase-locked by a small (subthreshold) periodic freshwater forcing. The local small periodic forcing is effectively amplified with the assistance of noise, to have a large-scale impact on North Atlantic overturning circulation and climate. These results suggest a stochastic resonance mechanism that can operate under Holocene boundary conditions and indicate that changes in the three-dimensional configuration of North Atlantic deep-water formation can be an important component of multicentennial climate variability during interglacials. Copyright 2007 by the American Geophysical Union. |
---|