Antarctic icebergs reorganize ocean circulation during Pleistocene glacials

The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Starr, Aidan, Hall, Ian R., Barker, Stephen, Rackow, Thomas, Zhang, Xu, Hemming, Sidney R., van der Lubbe, H. J.L., Knorr, Gregor, Berke, Melissa A., Bigg, Grant R., Cartagena-Sierra, Alejandra, Jiménez-Espejo, Francisco J., Gong, Xun, Gruetzner, Jens, Lathika, Nambiyathodi, LeVay, Leah J., Robinson, Rebecca S., Ziegler, Martin, Brentegani, Luna, Caley, Thibaut, Charles, Christopher D., Coenen, Jason J., Crespin, Julien G., Franzese, Allison M., Han, Xibin, Hines, Sophia K.V., Jimenez Espejo, Francisco J., Just, Janna, Koutsodendris, Andreas, Kubota, Kaoru, Norris, Richard D., dos Santos, Thiago Pereira, Rolison, John M., Simon, Margit H., Tangunan, Deborah, Yamane, Masako, Zhang, Hucai
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:https://research.vu.nl/en/publications/49232abc-e189-40ae-a20c-f49e76d11ca8
https://doi.org/10.1038/s41586-020-03094-7
https://hdl.handle.net/1871.1/49232abc-e189-40ae-a20c-f49e76d11ca8
https://research.vu.nl/ws/files/222914285/Antarctic_icebergs_reorganize_ocean_circulation_during_Pleistocene_glacials.pdf
http://www.scopus.com/inward/record.url?scp=85099645114&partnerID=8YFLogxK
http://www.scopus.com/inward/citedby.url?scp=85099645114&partnerID=8YFLogxK
id ftvuamstcris:oai:research.vu.nl:publications/49232abc-e189-40ae-a20c-f49e76d11ca8
record_format openpolar
institution Open Polar
collection Vrije Universiteit Amsterdam (VU): Research Portal
op_collection_id ftvuamstcris
language English
topic /dk/atira/pure/sustainabledevelopmentgoals/life_below_water
name=SDG 14 - Life Below Water
spellingShingle /dk/atira/pure/sustainabledevelopmentgoals/life_below_water
name=SDG 14 - Life Below Water
Starr, Aidan
Hall, Ian R.
Barker, Stephen
Rackow, Thomas
Zhang, Xu
Hemming, Sidney R.
van der Lubbe, H. J.L.
Knorr, Gregor
Berke, Melissa A.
Bigg, Grant R.
Cartagena-Sierra, Alejandra
Jiménez-Espejo, Francisco J.
Gong, Xun
Gruetzner, Jens
Lathika, Nambiyathodi
LeVay, Leah J.
Robinson, Rebecca S.
Ziegler, Martin
Brentegani, Luna
Caley, Thibaut
Charles, Christopher D.
Coenen, Jason J.
Crespin, Julien G.
Franzese, Allison M.
Han, Xibin
Hines, Sophia K.V.
Jimenez Espejo, Francisco J.
Just, Janna
Koutsodendris, Andreas
Kubota, Kaoru
Norris, Richard D.
dos Santos, Thiago Pereira
Rolison, John M.
Simon, Margit H.
Tangunan, Deborah
Yamane, Masako
Zhang, Hucai
Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
topic_facet /dk/atira/pure/sustainabledevelopmentgoals/life_below_water
name=SDG 14 - Life Below Water
description The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1.5 million years the AMOC had markedly different features from today 1 in the Atlantic basin, deep waters of Southern Ocean origin increased in volume while above them the core of the North Atlantic Deep Water (NADW) shoaled 2 . An absence of evidence on the origin of this phenomenon means that the sequence of events leading to global glacial conditions remains unclear. Here we present multi-proxy evidence showing that northward shifts in Antarctic iceberg melt in the Indian–Atlantic Southern Ocean (0–50° E) systematically preceded deep-water mass reorganizations by one to two thousand years during Pleistocene-era glaciations. With the aid of iceberg-trajectory model experiments, we demonstrate that such a shift in iceberg trajectories during glacial periods can result in a considerable redistribution of freshwater in the Southern Ocean. We suggest that this, in concert with increased sea-ice cover, enabled positive buoyancy anomalies to ‘escape’ into the upper limb of the AMOC, providing a teleconnection between surface Southern Ocean conditions and the formation of NADW. The magnitude and pacing of this mechanism evolved substantially across the mid-Pleistocene transition, and the coeval increase in magnitude of the ‘southern escape’ and deep circulation perturbations implicate this mechanism as a key feedback in the transition to the ‘100-kyr world’, in which glacial–interglacial cycles occur at roughly 100,000-year periods.
format Article in Journal/Newspaper
author Starr, Aidan
Hall, Ian R.
Barker, Stephen
Rackow, Thomas
Zhang, Xu
Hemming, Sidney R.
van der Lubbe, H. J.L.
Knorr, Gregor
Berke, Melissa A.
Bigg, Grant R.
Cartagena-Sierra, Alejandra
Jiménez-Espejo, Francisco J.
Gong, Xun
Gruetzner, Jens
Lathika, Nambiyathodi
LeVay, Leah J.
Robinson, Rebecca S.
Ziegler, Martin
Brentegani, Luna
Caley, Thibaut
Charles, Christopher D.
Coenen, Jason J.
Crespin, Julien G.
Franzese, Allison M.
Han, Xibin
Hines, Sophia K.V.
Jimenez Espejo, Francisco J.
Just, Janna
Koutsodendris, Andreas
Kubota, Kaoru
Norris, Richard D.
dos Santos, Thiago Pereira
Rolison, John M.
Simon, Margit H.
Tangunan, Deborah
Yamane, Masako
Zhang, Hucai
author_facet Starr, Aidan
Hall, Ian R.
Barker, Stephen
Rackow, Thomas
Zhang, Xu
Hemming, Sidney R.
van der Lubbe, H. J.L.
Knorr, Gregor
Berke, Melissa A.
Bigg, Grant R.
Cartagena-Sierra, Alejandra
Jiménez-Espejo, Francisco J.
Gong, Xun
Gruetzner, Jens
Lathika, Nambiyathodi
LeVay, Leah J.
Robinson, Rebecca S.
Ziegler, Martin
Brentegani, Luna
Caley, Thibaut
Charles, Christopher D.
Coenen, Jason J.
Crespin, Julien G.
Franzese, Allison M.
Han, Xibin
Hines, Sophia K.V.
Jimenez Espejo, Francisco J.
Just, Janna
Koutsodendris, Andreas
Kubota, Kaoru
Norris, Richard D.
dos Santos, Thiago Pereira
Rolison, John M.
Simon, Margit H.
Tangunan, Deborah
Yamane, Masako
Zhang, Hucai
author_sort Starr, Aidan
title Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
title_short Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
title_full Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
title_fullStr Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
title_full_unstemmed Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
title_sort antarctic icebergs reorganize ocean circulation during pleistocene glacials
publishDate 2021
url https://research.vu.nl/en/publications/49232abc-e189-40ae-a20c-f49e76d11ca8
https://doi.org/10.1038/s41586-020-03094-7
https://hdl.handle.net/1871.1/49232abc-e189-40ae-a20c-f49e76d11ca8
https://research.vu.nl/ws/files/222914285/Antarctic_icebergs_reorganize_ocean_circulation_during_Pleistocene_glacials.pdf
http://www.scopus.com/inward/record.url?scp=85099645114&partnerID=8YFLogxK
http://www.scopus.com/inward/citedby.url?scp=85099645114&partnerID=8YFLogxK
geographic Antarctic
Indian
Southern Ocean
geographic_facet Antarctic
Indian
Southern Ocean
genre Antarc*
Antarctic
Iceberg*
NADW
North Atlantic Deep Water
North Atlantic
Sea ice
Southern Ocean
genre_facet Antarc*
Antarctic
Iceberg*
NADW
North Atlantic Deep Water
North Atlantic
Sea ice
Southern Ocean
op_source Starr , A , Hall , I R , Barker , S , Rackow , T , Zhang , X , Hemming , S R , van der Lubbe , H J L , Knorr , G , Berke , M A , Bigg , G R , Cartagena-Sierra , A , Jiménez-Espejo , F J , Gong , X , Gruetzner , J , Lathika , N , LeVay , L J , Robinson , R S , Ziegler , M , Brentegani , L , Caley , T , Charles , C D , Coenen , J J , Crespin , J G , Franzese , A M , Han , X , Hines , S K V , Jimenez Espejo , F J , Just , J , Koutsodendris , A , Kubota , K , Norris , R D , dos Santos , T P , Rolison , J M , Simon , M H , Tangunan , D , Yamane , M , Zhang , H & Expedition 361 Science Party 2021 , ' Antarctic icebergs reorganize ocean circulation during Pleistocene glacials ' , Nature , vol. 589 , no. 7841 , pp. 236-241 . https://doi.org/10.1038/s41586-020-03094-7
op_relation https://research.vu.nl/en/publications/49232abc-e189-40ae-a20c-f49e76d11ca8
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1038/s41586-020-03094-7
container_title Nature
container_volume 589
container_issue 7841
container_start_page 236
op_container_end_page 241
_version_ 1809751220345110528
spelling ftvuamstcris:oai:research.vu.nl:publications/49232abc-e189-40ae-a20c-f49e76d11ca8 2024-09-09T19:11:28+00:00 Antarctic icebergs reorganize ocean circulation during Pleistocene glacials Starr, Aidan Hall, Ian R. Barker, Stephen Rackow, Thomas Zhang, Xu Hemming, Sidney R. van der Lubbe, H. J.L. Knorr, Gregor Berke, Melissa A. Bigg, Grant R. Cartagena-Sierra, Alejandra Jiménez-Espejo, Francisco J. Gong, Xun Gruetzner, Jens Lathika, Nambiyathodi LeVay, Leah J. Robinson, Rebecca S. Ziegler, Martin Brentegani, Luna Caley, Thibaut Charles, Christopher D. Coenen, Jason J. Crespin, Julien G. Franzese, Allison M. Han, Xibin Hines, Sophia K.V. Jimenez Espejo, Francisco J. Just, Janna Koutsodendris, Andreas Kubota, Kaoru Norris, Richard D. dos Santos, Thiago Pereira Rolison, John M. Simon, Margit H. Tangunan, Deborah Yamane, Masako Zhang, Hucai 2021-01-14 application/pdf https://research.vu.nl/en/publications/49232abc-e189-40ae-a20c-f49e76d11ca8 https://doi.org/10.1038/s41586-020-03094-7 https://hdl.handle.net/1871.1/49232abc-e189-40ae-a20c-f49e76d11ca8 https://research.vu.nl/ws/files/222914285/Antarctic_icebergs_reorganize_ocean_circulation_during_Pleistocene_glacials.pdf http://www.scopus.com/inward/record.url?scp=85099645114&partnerID=8YFLogxK http://www.scopus.com/inward/citedby.url?scp=85099645114&partnerID=8YFLogxK eng eng https://research.vu.nl/en/publications/49232abc-e189-40ae-a20c-f49e76d11ca8 info:eu-repo/semantics/openAccess Starr , A , Hall , I R , Barker , S , Rackow , T , Zhang , X , Hemming , S R , van der Lubbe , H J L , Knorr , G , Berke , M A , Bigg , G R , Cartagena-Sierra , A , Jiménez-Espejo , F J , Gong , X , Gruetzner , J , Lathika , N , LeVay , L J , Robinson , R S , Ziegler , M , Brentegani , L , Caley , T , Charles , C D , Coenen , J J , Crespin , J G , Franzese , A M , Han , X , Hines , S K V , Jimenez Espejo , F J , Just , J , Koutsodendris , A , Kubota , K , Norris , R D , dos Santos , T P , Rolison , J M , Simon , M H , Tangunan , D , Yamane , M , Zhang , H & Expedition 361 Science Party 2021 , ' Antarctic icebergs reorganize ocean circulation during Pleistocene glacials ' , Nature , vol. 589 , no. 7841 , pp. 236-241 . https://doi.org/10.1038/s41586-020-03094-7 /dk/atira/pure/sustainabledevelopmentgoals/life_below_water name=SDG 14 - Life Below Water article 2021 ftvuamstcris https://doi.org/10.1038/s41586-020-03094-7 2024-08-29T00:18:48Z The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1.5 million years the AMOC had markedly different features from today 1 in the Atlantic basin, deep waters of Southern Ocean origin increased in volume while above them the core of the North Atlantic Deep Water (NADW) shoaled 2 . An absence of evidence on the origin of this phenomenon means that the sequence of events leading to global glacial conditions remains unclear. Here we present multi-proxy evidence showing that northward shifts in Antarctic iceberg melt in the Indian–Atlantic Southern Ocean (0–50° E) systematically preceded deep-water mass reorganizations by one to two thousand years during Pleistocene-era glaciations. With the aid of iceberg-trajectory model experiments, we demonstrate that such a shift in iceberg trajectories during glacial periods can result in a considerable redistribution of freshwater in the Southern Ocean. We suggest that this, in concert with increased sea-ice cover, enabled positive buoyancy anomalies to ‘escape’ into the upper limb of the AMOC, providing a teleconnection between surface Southern Ocean conditions and the formation of NADW. The magnitude and pacing of this mechanism evolved substantially across the mid-Pleistocene transition, and the coeval increase in magnitude of the ‘southern escape’ and deep circulation perturbations implicate this mechanism as a key feedback in the transition to the ‘100-kyr world’, in which glacial–interglacial cycles occur at roughly 100,000-year periods. Article in Journal/Newspaper Antarc* Antarctic Iceberg* NADW North Atlantic Deep Water North Atlantic Sea ice Southern Ocean Vrije Universiteit Amsterdam (VU): Research Portal Antarctic Indian Southern Ocean Nature 589 7841 236 241