A role for icebergs in the 8.2 ka climate event

We investigate the potential role of icebergs in the 8.2 ka climate event, using a coupled climate model equipped with an iceberg component. First, we evaluate the effect of a large iceberg discharge originating from the decaying Laurentide ice sheet on ocean circulation, compared to a release of an...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Wiersma, A.P., Jongma, J.I.
Format: Article in Journal/Newspaper
Language:English
Published: 2009
Subjects:
Online Access:https://research.vu.nl/en/publications/46f852b9-0b40-4aa7-82f6-ddb8569f1d6f
https://doi.org/10.1007/s00382-009-0645-1
https://research.vu.nl/ws/files/2563657/232489.pdf
Description
Summary:We investigate the potential role of icebergs in the 8.2 ka climate event, using a coupled climate model equipped with an iceberg component. First, we evaluate the effect of a large iceberg discharge originating from the decaying Laurentide ice sheet on ocean circulation, compared to a release of an identical volume of freshwater alone. Our results show that, on top of the freshwater effect, a large iceberg discharge facilitates sea-ice growth as a result of lower sea-surface temperatures induced by latent heat of melting. This causes an 8% increased sea-ice cover, 5% stronger reduction in North Atlantic Deep Water production and 1°C lower temperature in Greenland. Second, we use the model to investigate the effect of a hypothetical two-stage lake drainage, which is suggested by several investigators to have triggered the 8.2 ka climate event. To account for the final collapse of the ice-dam holding the Laurentide Lakes we accompany the secondary freshwater pulse in one scenario with a fast 5-year iceberg discharge and in a second scenario with a slow 100-year iceberg discharge. Our experiments show that a two-stage lake drainage accompanied by the collapsing ice-dam could explain the anomalies observed around the 8.2 ka climate event in various climate records. In addition, they advocate a potential role for icebergs in the 8.2 ka climate event and illustrate the importance of latent heat of melting in the simulation of climate events that involve icebergs. Our two-stage lake drainage experiments provide a framework in the discussion of two-stage lake drainage and ice sheet collapse. © 2009 The Author(s).