Hydrological response to warm and dry weather:Do glaciers compensate?
© Copyright: Warm and dry summer days can lead to low streamflow due to a lack of rainfall and increased evaporation. In glacierized catchments, however, such periods can lead to a very different hydrological response as glaciers can supply an increased amount of meltwater, thereby compensating for...
Published in: | Hydrology and Earth System Sciences |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://research.vu.nl/en/publications/2e3ab851-723f-4243-bee5-7e207c0d06a0 https://doi.org/10.5194/hess-25-3245-2021 https://hdl.handle.net/1871.1/2e3ab851-723f-4243-bee5-7e207c0d06a0 |
id |
ftvuamstcris:oai:research.vu.nl:publications/2e3ab851-723f-4243-bee5-7e207c0d06a0 |
---|---|
record_format |
openpolar |
spelling |
ftvuamstcris:oai:research.vu.nl:publications/2e3ab851-723f-4243-bee5-7e207c0d06a0 2024-11-03T14:55:44+00:00 Hydrological response to warm and dry weather:Do glaciers compensate? Van Tiel, M. Van Loon, A.F. Seibert, J. Stahl, K. 2021-06-15 https://research.vu.nl/en/publications/2e3ab851-723f-4243-bee5-7e207c0d06a0 https://doi.org/10.5194/hess-25-3245-2021 https://hdl.handle.net/1871.1/2e3ab851-723f-4243-bee5-7e207c0d06a0 eng eng info:eu-repo/semantics/openAccess Van Tiel , M , Van Loon , A F , Seibert , J & Stahl , K 2021 , ' Hydrological response to warm and dry weather : Do glaciers compensate? ' , Hydrology and Earth System Sciences , vol. 25 , no. 6 , pp. 3245-3265 . https://doi.org/10.5194/hess-25-3245-2021 article 2021 ftvuamstcris https://doi.org/10.5194/hess-25-3245-2021 2024-10-24T00:28:03Z © Copyright: Warm and dry summer days can lead to low streamflow due to a lack of rainfall and increased evaporation. In glacierized catchments, however, such periods can lead to a very different hydrological response as glaciers can supply an increased amount of meltwater, thereby compensating for the rainfall deficits. Here, we analyzed glacier-fed streamflow responses to warm and dry (WD) periods in long-term streamflow observations (>50 years). WD events during summer (June-September) were analyzed for catchments with varying glacier cover in western Canada, southwestern Norway, and the European Alps. WD events were defined by days with temperatures above a daily varying threshold, based on the 80th percentile of the respective long-term temperature data for that day in the year, and daily precipitation sums below a fixed threshold (<2 mm d-1) for a minimum duration of 7 d. Streamflow responses to these WD events were expressed as level of compensation (C) and were calculated as the event streamflow relative to the long-term streamflow regime. C≥100 % indicates that increased melt and other catchment storages could compensate, or even overcompensate, the rainfall deficit and increased evaporation. Results showed a wide range of compensation levels, both between catchments and between different WD events in a particular catchment. C was, in general, higher than 100 % for catchments with a relative glacier cover higher than 5 %-15 %, depending on region and month. June was the month with highest compensation levels, but this was likely more influenced by snowmelt than by glacier melt. For WD events in September, C was still higher than 100 % in many catchments, which likely indicates the importance of glacier melt as a streamflow contributor in late summer. There was a considerable range in C of different WD events for groups of catchments with similar glacier cover. This could be partly explained by antecedent conditions, such as the amount of snow fallen in the previous winter and the streamflow ... Article in Journal/Newspaper glacier glacier* Vrije Universiteit Amsterdam (VU): Research Portal Canada Norway Hydrology and Earth System Sciences 25 6 3245 3265 |
institution |
Open Polar |
collection |
Vrije Universiteit Amsterdam (VU): Research Portal |
op_collection_id |
ftvuamstcris |
language |
English |
description |
© Copyright: Warm and dry summer days can lead to low streamflow due to a lack of rainfall and increased evaporation. In glacierized catchments, however, such periods can lead to a very different hydrological response as glaciers can supply an increased amount of meltwater, thereby compensating for the rainfall deficits. Here, we analyzed glacier-fed streamflow responses to warm and dry (WD) periods in long-term streamflow observations (>50 years). WD events during summer (June-September) were analyzed for catchments with varying glacier cover in western Canada, southwestern Norway, and the European Alps. WD events were defined by days with temperatures above a daily varying threshold, based on the 80th percentile of the respective long-term temperature data for that day in the year, and daily precipitation sums below a fixed threshold (<2 mm d-1) for a minimum duration of 7 d. Streamflow responses to these WD events were expressed as level of compensation (C) and were calculated as the event streamflow relative to the long-term streamflow regime. C≥100 % indicates that increased melt and other catchment storages could compensate, or even overcompensate, the rainfall deficit and increased evaporation. Results showed a wide range of compensation levels, both between catchments and between different WD events in a particular catchment. C was, in general, higher than 100 % for catchments with a relative glacier cover higher than 5 %-15 %, depending on region and month. June was the month with highest compensation levels, but this was likely more influenced by snowmelt than by glacier melt. For WD events in September, C was still higher than 100 % in many catchments, which likely indicates the importance of glacier melt as a streamflow contributor in late summer. There was a considerable range in C of different WD events for groups of catchments with similar glacier cover. This could be partly explained by antecedent conditions, such as the amount of snow fallen in the previous winter and the streamflow ... |
format |
Article in Journal/Newspaper |
author |
Van Tiel, M. Van Loon, A.F. Seibert, J. Stahl, K. |
spellingShingle |
Van Tiel, M. Van Loon, A.F. Seibert, J. Stahl, K. Hydrological response to warm and dry weather:Do glaciers compensate? |
author_facet |
Van Tiel, M. Van Loon, A.F. Seibert, J. Stahl, K. |
author_sort |
Van Tiel, M. |
title |
Hydrological response to warm and dry weather:Do glaciers compensate? |
title_short |
Hydrological response to warm and dry weather:Do glaciers compensate? |
title_full |
Hydrological response to warm and dry weather:Do glaciers compensate? |
title_fullStr |
Hydrological response to warm and dry weather:Do glaciers compensate? |
title_full_unstemmed |
Hydrological response to warm and dry weather:Do glaciers compensate? |
title_sort |
hydrological response to warm and dry weather:do glaciers compensate? |
publishDate |
2021 |
url |
https://research.vu.nl/en/publications/2e3ab851-723f-4243-bee5-7e207c0d06a0 https://doi.org/10.5194/hess-25-3245-2021 https://hdl.handle.net/1871.1/2e3ab851-723f-4243-bee5-7e207c0d06a0 |
geographic |
Canada Norway |
geographic_facet |
Canada Norway |
genre |
glacier glacier* |
genre_facet |
glacier glacier* |
op_source |
Van Tiel , M , Van Loon , A F , Seibert , J & Stahl , K 2021 , ' Hydrological response to warm and dry weather : Do glaciers compensate? ' , Hydrology and Earth System Sciences , vol. 25 , no. 6 , pp. 3245-3265 . https://doi.org/10.5194/hess-25-3245-2021 |
op_rights |
info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/hess-25-3245-2021 |
container_title |
Hydrology and Earth System Sciences |
container_volume |
25 |
container_issue |
6 |
container_start_page |
3245 |
op_container_end_page |
3265 |
_version_ |
1814715413541421056 |