Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES)
The role of sea ice in the carbon cycle is minimally represented in current Earth System Models (ESMs). Among potentially important flaws, mentioned by several authors and generally overlooked during ESM design, is the link between sea-ice growth and melt and oceanic dissolved inorganic carbon (DIC)...
Published in: | Elementa: Science of the Anthropocene |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://www.vliz.be/imisdocs/publications/313342.pdf |
id |
ftvliz:oai:oma.vliz.be:295754 |
---|---|
record_format |
openpolar |
spelling |
ftvliz:oai:oma.vliz.be:295754 2023-05-15T14:29:20+02:00 Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES) Moreau, S. Vancoppenolle, M. Bopp, L. Aumont, O. Madec, G. Delille, B. Tison, J.-L. Barriat, P.-Y. Goosse, H. 2016 application/pdf https://www.vliz.be/imisdocs/publications/313342.pdf en eng info:eu-repo/semantics/altIdentifier/wos/000389921400001 info:eu-repo/semantics/altIdentifier/doi/doi.org/10.12952/journal.elementa.000122 https://www.vliz.be/imisdocs/publications/313342.pdf info:eu-repo/semantics/openAccess %3Ci%3EElem.+Sci.+Anth.++4%3C%2Fi%3E%3A+122.+%3Ca+href%3D%22https%3A%2F%2Fdx.doi.org%2F10.12952%2Fjournal.elementa.000122%22+target%3D%22_blank%22%3Ehttps%3A%2F%2Fdx.doi.org%2F10.12952%2Fjournal.elementa.000122%3C%2Fa%3E info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2016 ftvliz https://doi.org/10.12952/journal.elementa.000122 2022-05-01T10:59:59Z The role of sea ice in the carbon cycle is minimally represented in current Earth System Models (ESMs). Among potentially important flaws, mentioned by several authors and generally overlooked during ESM design, is the link between sea-ice growth and melt and oceanic dissolved inorganic carbon (DIC) and total alkalinity (TA). Here we investigate whether this link is indeed an important feature of the marine carbon cycle misrepresented in ESMs. We use an ocean general circulation model (NEMO-LIM-PISCES) with sea-ice and marine carbon cycle components, forced by atmospheric reanalyses, adding a first-order representation of DIC and TA storage and release in/from sea ice. Our results suggest that DIC rejection during sea-ice growth releases several hundred Tg C yr −1 to the surface ocean, of which < 2% is exported to depth, leading to a notable but weak redistribution of DIC towards deep polar basins. Active carbon processes (mainly CaCO 3 precipitation but also ice-atmosphere CO 2 fluxes and net community production) increasing the TA/DIC ratio in sea-ice modified ocean-atmosphere CO 2 fluxes by a few Tg C yr −1 in the sea-ice zone, with specific hemispheric effects: DIC content of the Arctic basin decreased but DIC content of the Southern Ocean increased. For the global ocean, DIC content increased by 4 Tg C yr −1 or 2 Pg C after 500 years of model run. The simulated numbers are generally small compared to the present-day global ocean annual CO 2 sink (2.6 ± 0.5 Pg C yr −1 ). However, sea-ice carbon processes seem important at regional scales as they act significantly on DIC redistribution within and outside polar basins. The efficiency of carbon export to depth depends on the representation of surface-subsurface exchanges and their relationship with sea ice, and could differ substantially if a higher resolution or different ocean model were used. Article in Journal/Newspaper Arctic Basin Arctic Sea ice Southern Ocean Flanders Marine Institute (VLIZ): Open Marine Archive (OMA) Arctic Southern Ocean Elementa: Science of the Anthropocene 4 |
institution |
Open Polar |
collection |
Flanders Marine Institute (VLIZ): Open Marine Archive (OMA) |
op_collection_id |
ftvliz |
language |
English |
description |
The role of sea ice in the carbon cycle is minimally represented in current Earth System Models (ESMs). Among potentially important flaws, mentioned by several authors and generally overlooked during ESM design, is the link between sea-ice growth and melt and oceanic dissolved inorganic carbon (DIC) and total alkalinity (TA). Here we investigate whether this link is indeed an important feature of the marine carbon cycle misrepresented in ESMs. We use an ocean general circulation model (NEMO-LIM-PISCES) with sea-ice and marine carbon cycle components, forced by atmospheric reanalyses, adding a first-order representation of DIC and TA storage and release in/from sea ice. Our results suggest that DIC rejection during sea-ice growth releases several hundred Tg C yr −1 to the surface ocean, of which < 2% is exported to depth, leading to a notable but weak redistribution of DIC towards deep polar basins. Active carbon processes (mainly CaCO 3 precipitation but also ice-atmosphere CO 2 fluxes and net community production) increasing the TA/DIC ratio in sea-ice modified ocean-atmosphere CO 2 fluxes by a few Tg C yr −1 in the sea-ice zone, with specific hemispheric effects: DIC content of the Arctic basin decreased but DIC content of the Southern Ocean increased. For the global ocean, DIC content increased by 4 Tg C yr −1 or 2 Pg C after 500 years of model run. The simulated numbers are generally small compared to the present-day global ocean annual CO 2 sink (2.6 ± 0.5 Pg C yr −1 ). However, sea-ice carbon processes seem important at regional scales as they act significantly on DIC redistribution within and outside polar basins. The efficiency of carbon export to depth depends on the representation of surface-subsurface exchanges and their relationship with sea ice, and could differ substantially if a higher resolution or different ocean model were used. |
format |
Article in Journal/Newspaper |
author |
Moreau, S. Vancoppenolle, M. Bopp, L. Aumont, O. Madec, G. Delille, B. Tison, J.-L. Barriat, P.-Y. Goosse, H. |
spellingShingle |
Moreau, S. Vancoppenolle, M. Bopp, L. Aumont, O. Madec, G. Delille, B. Tison, J.-L. Barriat, P.-Y. Goosse, H. Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES) |
author_facet |
Moreau, S. Vancoppenolle, M. Bopp, L. Aumont, O. Madec, G. Delille, B. Tison, J.-L. Barriat, P.-Y. Goosse, H. |
author_sort |
Moreau, S. |
title |
Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES) |
title_short |
Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES) |
title_full |
Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES) |
title_fullStr |
Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES) |
title_full_unstemmed |
Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES) |
title_sort |
assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (nemo-lim-pisces) |
publishDate |
2016 |
url |
https://www.vliz.be/imisdocs/publications/313342.pdf |
geographic |
Arctic Southern Ocean |
geographic_facet |
Arctic Southern Ocean |
genre |
Arctic Basin Arctic Sea ice Southern Ocean |
genre_facet |
Arctic Basin Arctic Sea ice Southern Ocean |
op_source |
%3Ci%3EElem.+Sci.+Anth.++4%3C%2Fi%3E%3A+122.+%3Ca+href%3D%22https%3A%2F%2Fdx.doi.org%2F10.12952%2Fjournal.elementa.000122%22+target%3D%22_blank%22%3Ehttps%3A%2F%2Fdx.doi.org%2F10.12952%2Fjournal.elementa.000122%3C%2Fa%3E |
op_relation |
info:eu-repo/semantics/altIdentifier/wos/000389921400001 info:eu-repo/semantics/altIdentifier/doi/doi.org/10.12952/journal.elementa.000122 https://www.vliz.be/imisdocs/publications/313342.pdf |
op_rights |
info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.12952/journal.elementa.000122 |
container_title |
Elementa: Science of the Anthropocene |
container_volume |
4 |
_version_ |
1766303371655905280 |