Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem
Primary production is the fundamental source of energy to foodwebs and ecosystems, and is thus an important constraint on soil communities. This coupling is particularly evident in polar terrestrial ecosystems where biological diversity and activity is tightly constrained by edaphic gradients of pro...
Published in: | PeerJ |
---|---|
Main Authors: | , , , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
PeerJ
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/81675 https://doi.org/10.7717/peerj.3377 |
id |
ftvirginiatec:oai:vtechworks.lib.vt.edu:10919/81675 |
---|---|
record_format |
openpolar |
spelling |
ftvirginiatec:oai:vtechworks.lib.vt.edu:10919/81675 2024-05-19T07:30:30+00:00 Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem PeerJ Geyer, Kevin M. Takacs-Vesbach, Cristina D. Gooseff, Michael N. Barrett, John E. Biological Sciences 2017-07-25 application/pdf http://hdl.handle.net/10919/81675 https://doi.org/10.7717/peerj.3377 en_US eng PeerJ http://hdl.handle.net/10919/81675 https://doi.org/10.7717/peerj.3377 Creative Commons Attribution 3.0 United States http://creativecommons.org/licenses/by/3.0/us/ Microbial ecology Pulse amplitude modulation fluorometry Primary production McMurdo Dry Valleys Biogeochemistry Environmental gradients Article - Refereed 2017 ftvirginiatec https://doi.org/10.7717/peerj.3377 2024-05-01T00:59:43Z Primary production is the fundamental source of energy to foodwebs and ecosystems, and is thus an important constraint on soil communities. This coupling is particularly evident in polar terrestrial ecosystems where biological diversity and activity is tightly constrained by edaphic gradients of productivity (e.g., soil moisture, organic carbon availability) and geochemical severity (e.g., pH, electrical conductivity). In the McMurdo Dry Valleys of Antarctica, environmental gradients determine numerous properties of soil communities and yet relatively few estimates of gross or net primary productivity (GPP, NPP) exist for this region. Here we describe a survey utilizing pulse amplitude modulation (PAM) fluorometry to estimate rates of GPP across a broad environmental gradient along with belowground microbial diversity and decomposition. PAM estimates of GPP ranged from an average of 0.27 mol O2/m2/s in the most arid soils to an average of 6.97 mol O2/m2/s in the most productive soils, the latter equivalent to 217 g C/m2/y in annual NPP assuming a 60 day growing season. A diversity index of four carbon-acquiring enzyme activities also increased with soil productivity, suggesting that the diversity of organic substrates in mesic environments may be an additional driver of microbial diversity. Overall, soil productivity was a stronger predictor of microbial diversity and enzymatic activity than any estimate of geochemical severity. These results highlight the fundamental role of environmental gradients to control community diversity and the dynamics of ecosystem-scale carbon pools in arid systems. Article in Journal/Newspaper Antarc* Antarctica McMurdo Dry Valleys polar desert VTechWorks (VirginiaTech) PeerJ 5 e3377 |
institution |
Open Polar |
collection |
VTechWorks (VirginiaTech) |
op_collection_id |
ftvirginiatec |
language |
English |
topic |
Microbial ecology Pulse amplitude modulation fluorometry Primary production McMurdo Dry Valleys Biogeochemistry Environmental gradients |
spellingShingle |
Microbial ecology Pulse amplitude modulation fluorometry Primary production McMurdo Dry Valleys Biogeochemistry Environmental gradients Geyer, Kevin M. Takacs-Vesbach, Cristina D. Gooseff, Michael N. Barrett, John E. Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem |
topic_facet |
Microbial ecology Pulse amplitude modulation fluorometry Primary production McMurdo Dry Valleys Biogeochemistry Environmental gradients |
description |
Primary production is the fundamental source of energy to foodwebs and ecosystems, and is thus an important constraint on soil communities. This coupling is particularly evident in polar terrestrial ecosystems where biological diversity and activity is tightly constrained by edaphic gradients of productivity (e.g., soil moisture, organic carbon availability) and geochemical severity (e.g., pH, electrical conductivity). In the McMurdo Dry Valleys of Antarctica, environmental gradients determine numerous properties of soil communities and yet relatively few estimates of gross or net primary productivity (GPP, NPP) exist for this region. Here we describe a survey utilizing pulse amplitude modulation (PAM) fluorometry to estimate rates of GPP across a broad environmental gradient along with belowground microbial diversity and decomposition. PAM estimates of GPP ranged from an average of 0.27 mol O2/m2/s in the most arid soils to an average of 6.97 mol O2/m2/s in the most productive soils, the latter equivalent to 217 g C/m2/y in annual NPP assuming a 60 day growing season. A diversity index of four carbon-acquiring enzyme activities also increased with soil productivity, suggesting that the diversity of organic substrates in mesic environments may be an additional driver of microbial diversity. Overall, soil productivity was a stronger predictor of microbial diversity and enzymatic activity than any estimate of geochemical severity. These results highlight the fundamental role of environmental gradients to control community diversity and the dynamics of ecosystem-scale carbon pools in arid systems. |
author2 |
Biological Sciences |
format |
Article in Journal/Newspaper |
author |
Geyer, Kevin M. Takacs-Vesbach, Cristina D. Gooseff, Michael N. Barrett, John E. |
author_facet |
Geyer, Kevin M. Takacs-Vesbach, Cristina D. Gooseff, Michael N. Barrett, John E. |
author_sort |
Geyer, Kevin M. |
title |
Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem |
title_short |
Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem |
title_full |
Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem |
title_fullStr |
Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem |
title_full_unstemmed |
Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem |
title_sort |
primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem |
publisher |
PeerJ |
publishDate |
2017 |
url |
http://hdl.handle.net/10919/81675 https://doi.org/10.7717/peerj.3377 |
genre |
Antarc* Antarctica McMurdo Dry Valleys polar desert |
genre_facet |
Antarc* Antarctica McMurdo Dry Valleys polar desert |
op_relation |
http://hdl.handle.net/10919/81675 https://doi.org/10.7717/peerj.3377 |
op_rights |
Creative Commons Attribution 3.0 United States http://creativecommons.org/licenses/by/3.0/us/ |
op_doi |
https://doi.org/10.7717/peerj.3377 |
container_title |
PeerJ |
container_volume |
5 |
container_start_page |
e3377 |
_version_ |
1799486871067164672 |