Impact of lowered pH on the morphological, physiological, and microbial community composition of the temperate calcareous sponge, Grantia sp.

Global atmospheric carbon dioxide (CO₂) concentrations have been increasing at unprecedented rates since the industrial revolution. The ocean has been acting as a buffer, absorbing CO₂, resulting in rising sea temperature (ocean warming; OW) and lowering its pH (ocean acidification; OA). OA is known...

Full description

Bibliographic Details
Main Author: McCullough, Alice
Format: Thesis
Language:unknown
Published: 2022
Subjects:
Online Access:https://doi.org/10.26686/wgtn.20156093
https://figshare.com/articles/thesis/Impact_of_lowered_pH_on_the_morphological_physiological_and_microbial_community_composition_of_the_temperate_calcareous_sponge_Grantia_sp_/20156093
id ftvictoriauwfig:oai:figshare.com:article/20156093
record_format openpolar
spelling ftvictoriauwfig:oai:figshare.com:article/20156093 2023-05-15T17:51:11+02:00 Impact of lowered pH on the morphological, physiological, and microbial community composition of the temperate calcareous sponge, Grantia sp. McCullough, Alice 2022-06-27T00:00:00Z https://doi.org/10.26686/wgtn.20156093 https://figshare.com/articles/thesis/Impact_of_lowered_pH_on_the_morphological_physiological_and_microbial_community_composition_of_the_temperate_calcareous_sponge_Grantia_sp_/20156093 unknown doi:10.26686/wgtn.20156093 https://figshare.com/articles/thesis/Impact_of_lowered_pH_on_the_morphological_physiological_and_microbial_community_composition_of_the_temperate_calcareous_sponge_Grantia_sp_/20156093 Author Retains Copyright Marine and Estuarine Ecology (incl. Marine Ichthyology) Ocean acidification climate change sponge calcareous School: School of Biological Sciences 060205 Marine and Estuarine Ecology (incl. Marine Ichthyology) 190101 Climate change adaptation measures (excl. ecosystem) Degree Discipline: Marine Biology Degree Level: Masters Degree Name: Master of Science Text Thesis 2022 ftvictoriauwfig https://doi.org/10.26686/wgtn.20156093 2022-06-29T23:06:56Z Global atmospheric carbon dioxide (CO₂) concentrations have been increasing at unprecedented rates since the industrial revolution. The ocean has been acting as a buffer, absorbing CO₂, resulting in rising sea temperature (ocean warming; OW) and lowering its pH (ocean acidification; OA). OA is known to cause reductions in the calcification rates of marine calcifiers, resulting in dissolution of calcium carbonate shells and skeletons. Sponges have important functional and structural roles in marine ecosystems and there is some evidence to suggest that sponges may be “winners” under future ocean climate conditions due to their high level of resilience to OA and OW and the increased availability of space as a result of reductions in more sensitive calcifying species. Although this may be the case for those sponges with skeletons made up of siliceous spicules, little is known about how calcareous sponges, with calcite spicules, may react to OA conditions. This thesis addresses a knowledge gap on how temperate calcareous sponges may respond to OA using Grantia sp. as a model species. A twenty-eight-day experiment with three control (pH 8.0) tanks and three OA (based on IPCC (RCP8.5); pH 7.6) tanks was used to measure changes in sponge size, spicule size, spicule deformation, respiration rate and microbial community structure. I found no signs of corrosion or significant change in area of sponges, however, there was a significant 25% reduction in the spicule size under the projected climate change OA “worst case scenario” conditions, a sign that sponge growth was impacted under stressful external pressure. How this reduction is spicule size will impact the sponge is still unknown. Respiration rates of sponges were not significantly different between the control or treatment sponges, and the microbiome of control and OA sponges did not significantly differ, but they did change significantly over time (T0 compared to T28 (final day of the experiment). The microbiome over time changed with increasing abundance of ... Thesis Ocean acidification Open Access Victoria University of Wellington / Te Herenga Waka
institution Open Polar
collection Open Access Victoria University of Wellington / Te Herenga Waka
op_collection_id ftvictoriauwfig
language unknown
topic Marine and Estuarine Ecology (incl. Marine Ichthyology)
Ocean acidification
climate change
sponge
calcareous
School: School of Biological Sciences
060205 Marine and Estuarine Ecology (incl. Marine Ichthyology)
190101 Climate change adaptation measures (excl. ecosystem)
Degree Discipline: Marine Biology
Degree Level: Masters
Degree Name: Master of Science
spellingShingle Marine and Estuarine Ecology (incl. Marine Ichthyology)
Ocean acidification
climate change
sponge
calcareous
School: School of Biological Sciences
060205 Marine and Estuarine Ecology (incl. Marine Ichthyology)
190101 Climate change adaptation measures (excl. ecosystem)
Degree Discipline: Marine Biology
Degree Level: Masters
Degree Name: Master of Science
McCullough, Alice
Impact of lowered pH on the morphological, physiological, and microbial community composition of the temperate calcareous sponge, Grantia sp.
topic_facet Marine and Estuarine Ecology (incl. Marine Ichthyology)
Ocean acidification
climate change
sponge
calcareous
School: School of Biological Sciences
060205 Marine and Estuarine Ecology (incl. Marine Ichthyology)
190101 Climate change adaptation measures (excl. ecosystem)
Degree Discipline: Marine Biology
Degree Level: Masters
Degree Name: Master of Science
description Global atmospheric carbon dioxide (CO₂) concentrations have been increasing at unprecedented rates since the industrial revolution. The ocean has been acting as a buffer, absorbing CO₂, resulting in rising sea temperature (ocean warming; OW) and lowering its pH (ocean acidification; OA). OA is known to cause reductions in the calcification rates of marine calcifiers, resulting in dissolution of calcium carbonate shells and skeletons. Sponges have important functional and structural roles in marine ecosystems and there is some evidence to suggest that sponges may be “winners” under future ocean climate conditions due to their high level of resilience to OA and OW and the increased availability of space as a result of reductions in more sensitive calcifying species. Although this may be the case for those sponges with skeletons made up of siliceous spicules, little is known about how calcareous sponges, with calcite spicules, may react to OA conditions. This thesis addresses a knowledge gap on how temperate calcareous sponges may respond to OA using Grantia sp. as a model species. A twenty-eight-day experiment with three control (pH 8.0) tanks and three OA (based on IPCC (RCP8.5); pH 7.6) tanks was used to measure changes in sponge size, spicule size, spicule deformation, respiration rate and microbial community structure. I found no signs of corrosion or significant change in area of sponges, however, there was a significant 25% reduction in the spicule size under the projected climate change OA “worst case scenario” conditions, a sign that sponge growth was impacted under stressful external pressure. How this reduction is spicule size will impact the sponge is still unknown. Respiration rates of sponges were not significantly different between the control or treatment sponges, and the microbiome of control and OA sponges did not significantly differ, but they did change significantly over time (T0 compared to T28 (final day of the experiment). The microbiome over time changed with increasing abundance of ...
format Thesis
author McCullough, Alice
author_facet McCullough, Alice
author_sort McCullough, Alice
title Impact of lowered pH on the morphological, physiological, and microbial community composition of the temperate calcareous sponge, Grantia sp.
title_short Impact of lowered pH on the morphological, physiological, and microbial community composition of the temperate calcareous sponge, Grantia sp.
title_full Impact of lowered pH on the morphological, physiological, and microbial community composition of the temperate calcareous sponge, Grantia sp.
title_fullStr Impact of lowered pH on the morphological, physiological, and microbial community composition of the temperate calcareous sponge, Grantia sp.
title_full_unstemmed Impact of lowered pH on the morphological, physiological, and microbial community composition of the temperate calcareous sponge, Grantia sp.
title_sort impact of lowered ph on the morphological, physiological, and microbial community composition of the temperate calcareous sponge, grantia sp.
publishDate 2022
url https://doi.org/10.26686/wgtn.20156093
https://figshare.com/articles/thesis/Impact_of_lowered_pH_on_the_morphological_physiological_and_microbial_community_composition_of_the_temperate_calcareous_sponge_Grantia_sp_/20156093
genre Ocean acidification
genre_facet Ocean acidification
op_relation doi:10.26686/wgtn.20156093
https://figshare.com/articles/thesis/Impact_of_lowered_pH_on_the_morphological_physiological_and_microbial_community_composition_of_the_temperate_calcareous_sponge_Grantia_sp_/20156093
op_rights Author Retains Copyright
op_doi https://doi.org/10.26686/wgtn.20156093
_version_ 1766158249476751360