Glacier Speed-Up Events and Subglacial Hydrology on the Lower Franz Josef Glacier, New Zealand

The contribution of glacier mass loss to future sea level rise is still poorly constrained (Lemke and others, 2007). One of the remaining unknowns is how water inputs influence glacier velocity. Short-term variations in glacier velocity occur when a water input exceeds the capacity of the subglacial...

Full description

Bibliographic Details
Main Author: Kehrl, Laura M.
Format: Thesis
Language:unknown
Published: 2012
Subjects:
Online Access:https://doi.org/10.26686/wgtn.17000293.v1
https://figshare.com/articles/thesis/Glacier_Speed-Up_Events_and_Subglacial_Hydrology_on_the_Lower_Franz_Josef_Glacier_New_Zealand/17000293
Description
Summary:The contribution of glacier mass loss to future sea level rise is still poorly constrained (Lemke and others, 2007). One of the remaining unknowns is how water inputs influence glacier velocity. Short-term variations in glacier velocity occur when a water input exceeds the capacity of the subglacial drainage system, and the subglacial water pressure increases. Several studies (Van de Wal and others, 2008; Sundal and others, 2011) have suggested that high ice-flow velocities during these events are later offset by lower ice-flow velocities due to a more efficient subglacial drainage system. This study combines in-situ velocity measurements with a full Stokes glacier flowline model to understand the spatial and temporal variations in glacier flow on the lower Franz Josef Glacier, New Zealand. The Franz Josef Glacier experiences significant water inputs throughout the year (Anderson and others, 2006), and as a result, the subglacial drainage system is likely well-developed. In March 2011, measured ice-flow velocities increased by up to 75% above background values in response to rain events and by up to 32% in response to diurnal melt cycles. These speed-up events occurred at all survey locations across the lower glacier. Through flowline modelling, it is shown that the enhanced glacier flow can be explained by a spatially-uniform subglacial water pressure that increased during periods of heavy rain and glacier melt. From these results, it is suggested that temporary spikes in water inputs can cause glacier speed-up events, even when the subglacial hydrology system is well-developed (cf. Schoof, 2010). Future studies should focus on determining the contribution of glacier speed-up events to overall glacier motion.