Acoustical measurement of velocity, vorticity and turbulence in the arctic boundary layer beneath ice
The concept of reciprocal acoustical travel-time measurements as a means of determining path-averaged currents is well established. We have designed an instrument to exploit this principle in studies of the boundary layer just beneath the arctic ice cover. Such measurements are of interest both beca...
Main Author: | |
---|---|
Other Authors: | , |
Format: | Thesis |
Language: | English |
Published: |
1993
|
Subjects: | |
Online Access: | https://dspace.library.uvic.ca//handle/1828/9619 |
id |
ftuvicpubl:oai:dspace.library.uvic.ca:1828/9619 |
---|---|
record_format |
openpolar |
spelling |
ftuvicpubl:oai:dspace.library.uvic.ca:1828/9619 2023-05-15T14:53:11+02:00 Acoustical measurement of velocity, vorticity and turbulence in the arctic boundary layer beneath ice Menemenlis, Dimitris Farmer, David M. Kirlin, R. Lynn 1993 application/pdf https://dspace.library.uvic.ca//handle/1828/9619 English en eng https://dspace.library.uvic.ca//handle/1828/9619 Available to the World Wide Web Boundary layer Speed Turbulence Ice Arctic regions Thesis 1993 ftuvicpubl 2022-05-19T06:10:23Z The concept of reciprocal acoustical travel-time measurements as a means of determining path-averaged currents is well established. We have designed an instrument to exploit this principle in studies of the boundary layer just beneath the arctic ice cover. Such measurements are of interest both because of the opportunity provided for comparison with the more commonly acquired point measurements and because of a particular configuration allowing determination of average vorticity, which cannot be achieved with the traditional approach; in addition, their unprecedented sensitivity allows detection of phenomena not observable with traditional sensors. The acoustical instrument was deployed during the spring of 1989 in the sub-ice boundary layer of the Eastern Arctic in order to measure turbulence, path-averaged horizontal current, and relative vorticity. A triangular acoustic array of side 200 m was used to obtain reciprocal transmission measurements at 132 kHz, at 8, 10 and 20 m beneath an ice floe. Pseudo-random coding and real-time signal processing provided precise acoustic travel time and amplitude for each reciprocal path. Mean current along each acoustic path is proportional to travel time difference between reciprocal transmissions. Horizontal velocity normal to the acoustic paths is measured using scintillation drift. The instrument measures horizontal circulation and average vorticity relative to the ice, at length scales characteristic of high frequency internal waves in the region. The rms noise level of the measurements is less than 0.1 mm/s for velocity measurements and 0.01 for vorticity, averaged over one minute. Except near the mechanical resonance frequency of the moorings, the measurement accuracy is limited by multipath interference. Path-averaged horizontal velocity is compared to point measurements and marked differences are observed due to local anomalies of the flow field. The integral measurement of current is particularly sensitive to the passage of internal waves that have wavelengths ... Thesis Arctic University of Victoria (Canada): UVicDSpace Arctic |
institution |
Open Polar |
collection |
University of Victoria (Canada): UVicDSpace |
op_collection_id |
ftuvicpubl |
language |
English |
topic |
Boundary layer Speed Turbulence Ice Arctic regions |
spellingShingle |
Boundary layer Speed Turbulence Ice Arctic regions Menemenlis, Dimitris Acoustical measurement of velocity, vorticity and turbulence in the arctic boundary layer beneath ice |
topic_facet |
Boundary layer Speed Turbulence Ice Arctic regions |
description |
The concept of reciprocal acoustical travel-time measurements as a means of determining path-averaged currents is well established. We have designed an instrument to exploit this principle in studies of the boundary layer just beneath the arctic ice cover. Such measurements are of interest both because of the opportunity provided for comparison with the more commonly acquired point measurements and because of a particular configuration allowing determination of average vorticity, which cannot be achieved with the traditional approach; in addition, their unprecedented sensitivity allows detection of phenomena not observable with traditional sensors. The acoustical instrument was deployed during the spring of 1989 in the sub-ice boundary layer of the Eastern Arctic in order to measure turbulence, path-averaged horizontal current, and relative vorticity. A triangular acoustic array of side 200 m was used to obtain reciprocal transmission measurements at 132 kHz, at 8, 10 and 20 m beneath an ice floe. Pseudo-random coding and real-time signal processing provided precise acoustic travel time and amplitude for each reciprocal path. Mean current along each acoustic path is proportional to travel time difference between reciprocal transmissions. Horizontal velocity normal to the acoustic paths is measured using scintillation drift. The instrument measures horizontal circulation and average vorticity relative to the ice, at length scales characteristic of high frequency internal waves in the region. The rms noise level of the measurements is less than 0.1 mm/s for velocity measurements and 0.01 for vorticity, averaged over one minute. Except near the mechanical resonance frequency of the moorings, the measurement accuracy is limited by multipath interference. Path-averaged horizontal velocity is compared to point measurements and marked differences are observed due to local anomalies of the flow field. The integral measurement of current is particularly sensitive to the passage of internal waves that have wavelengths ... |
author2 |
Farmer, David M. Kirlin, R. Lynn |
format |
Thesis |
author |
Menemenlis, Dimitris |
author_facet |
Menemenlis, Dimitris |
author_sort |
Menemenlis, Dimitris |
title |
Acoustical measurement of velocity, vorticity and turbulence in the arctic boundary layer beneath ice |
title_short |
Acoustical measurement of velocity, vorticity and turbulence in the arctic boundary layer beneath ice |
title_full |
Acoustical measurement of velocity, vorticity and turbulence in the arctic boundary layer beneath ice |
title_fullStr |
Acoustical measurement of velocity, vorticity and turbulence in the arctic boundary layer beneath ice |
title_full_unstemmed |
Acoustical measurement of velocity, vorticity and turbulence in the arctic boundary layer beneath ice |
title_sort |
acoustical measurement of velocity, vorticity and turbulence in the arctic boundary layer beneath ice |
publishDate |
1993 |
url |
https://dspace.library.uvic.ca//handle/1828/9619 |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic |
genre_facet |
Arctic |
op_relation |
https://dspace.library.uvic.ca//handle/1828/9619 |
op_rights |
Available to the World Wide Web |
_version_ |
1766324603928444928 |