Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network
International audience The mountainous snow cover is highly variable at all temporal and spatial scales. Snowpack models only imperfectly represent this variability, because of uncertain meteorological inputs, physical parameterizations, and unresolved terrain features. In situ observations of the h...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2022
|
Subjects: | |
Online Access: | https://hal.science/hal-03636922 https://hal.science/hal-03636922/document https://hal.science/hal-03636922/file/tc-16-1281-2022.pdf https://doi.org/10.5194/tc-16-1281-2022 |
id |
ftutoulouse3hal:oai:HAL:hal-03636922v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université Toulouse III - Paul Sabatier: HAL-UPS |
op_collection_id |
ftutoulouse3hal |
language |
English |
topic |
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology |
spellingShingle |
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology Cluzet, Bertrand Lafaysse, Matthieu Deschamps-Berger, César Vernay, Matthieu Dumont, Marie Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network |
topic_facet |
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology |
description |
International audience The mountainous snow cover is highly variable at all temporal and spatial scales. Snowpack models only imperfectly represent this variability, because of uncertain meteorological inputs, physical parameterizations, and unresolved terrain features. In situ observations of the height of snow (HS), despite their limited representativeness, could help constrain intermediate and large-scale modeling errors by means of data assimilation. In this work, we assimilate HS observations from an in situ network of 295 stations covering the French Alps, Pyrenees, and Andorra, over the period 2009–2019. In view of assimilating such observations into a spatialized snow cover modeling framework, we investigate whether such observations can be used to correct neighboring snowpack simulations. We use CrocO, an ensemble data assimilation framework of snow cover modeling, based on a particle filter suited to the propagation of information from observed to unobserved areas. This ensemble system already benefits from meteorological observations, assimilated within SAFRAN analysis scheme. CrocO also proposes various localization strategies to assimilate snow observations. These approaches are evaluated in a leave-one-out setup against the operational deterministic model and its ensemble open-loop counterpart, both running without HS assimilation. Results show that an intermediate localization radius of 35–50 km yields a slightly lower root mean square error (RMSE), and a better spread–skill than the strategy of assimilating all the observations from a whole mountain range. Significant continuous ranked probability score (CRPS) improvements of about 13 % are obtained in the areas where the open-loop modeling errors are the largest, e.g., the Haute-Ariège, Andorra, and the extreme southern Alps. Over these areas, weather station observations are generally sparser, resulting in more uncertain meteorological analyses and, therefore, snow simulations. In situ HS observations thus show an interesting complementarity ... |
author2 |
Centre d'Etudes de la Neige (CEN) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )-Université Grenoble Alpes (UGA) Centre d'études spatiales de la biosphère (CESBIO) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) |
format |
Article in Journal/Newspaper |
author |
Cluzet, Bertrand Lafaysse, Matthieu Deschamps-Berger, César Vernay, Matthieu Dumont, Marie |
author_facet |
Cluzet, Bertrand Lafaysse, Matthieu Deschamps-Berger, César Vernay, Matthieu Dumont, Marie |
author_sort |
Cluzet, Bertrand |
title |
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network |
title_short |
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network |
title_full |
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network |
title_fullStr |
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network |
title_full_unstemmed |
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network |
title_sort |
propagating information from snow observations with croco ensemble data assimilation system: a 10-years case study over a snow depth observation network |
publisher |
HAL CCSD |
publishDate |
2022 |
url |
https://hal.science/hal-03636922 https://hal.science/hal-03636922/document https://hal.science/hal-03636922/file/tc-16-1281-2022.pdf https://doi.org/10.5194/tc-16-1281-2022 |
genre |
The Cryosphere |
genre_facet |
The Cryosphere |
op_source |
ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-03636922 The Cryosphere, 2022, 16 (4), pp.1281-1298. ⟨10.5194/tc-16-1281-2022⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-16-1281-2022 hal-03636922 https://hal.science/hal-03636922 https://hal.science/hal-03636922/document https://hal.science/hal-03636922/file/tc-16-1281-2022.pdf doi:10.5194/tc-16-1281-2022 WOS: 000780085400001 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/tc-16-1281-2022 |
container_title |
The Cryosphere |
container_volume |
16 |
container_issue |
4 |
container_start_page |
1281 |
op_container_end_page |
1298 |
_version_ |
1810483355901231104 |
spelling |
ftutoulouse3hal:oai:HAL:hal-03636922v1 2024-09-15T18:38:58+00:00 Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network Cluzet, Bertrand Lafaysse, Matthieu Deschamps-Berger, César Vernay, Matthieu Dumont, Marie Centre d'Etudes de la Neige (CEN) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )-Université Grenoble Alpes (UGA) Centre d'études spatiales de la biosphère (CESBIO) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) 2022 https://hal.science/hal-03636922 https://hal.science/hal-03636922/document https://hal.science/hal-03636922/file/tc-16-1281-2022.pdf https://doi.org/10.5194/tc-16-1281-2022 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-16-1281-2022 hal-03636922 https://hal.science/hal-03636922 https://hal.science/hal-03636922/document https://hal.science/hal-03636922/file/tc-16-1281-2022.pdf doi:10.5194/tc-16-1281-2022 WOS: 000780085400001 info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-03636922 The Cryosphere, 2022, 16 (4), pp.1281-1298. ⟨10.5194/tc-16-1281-2022⟩ [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology info:eu-repo/semantics/article Journal articles 2022 ftutoulouse3hal https://doi.org/10.5194/tc-16-1281-2022 2024-06-25T00:10:32Z International audience The mountainous snow cover is highly variable at all temporal and spatial scales. Snowpack models only imperfectly represent this variability, because of uncertain meteorological inputs, physical parameterizations, and unresolved terrain features. In situ observations of the height of snow (HS), despite their limited representativeness, could help constrain intermediate and large-scale modeling errors by means of data assimilation. In this work, we assimilate HS observations from an in situ network of 295 stations covering the French Alps, Pyrenees, and Andorra, over the period 2009–2019. In view of assimilating such observations into a spatialized snow cover modeling framework, we investigate whether such observations can be used to correct neighboring snowpack simulations. We use CrocO, an ensemble data assimilation framework of snow cover modeling, based on a particle filter suited to the propagation of information from observed to unobserved areas. This ensemble system already benefits from meteorological observations, assimilated within SAFRAN analysis scheme. CrocO also proposes various localization strategies to assimilate snow observations. These approaches are evaluated in a leave-one-out setup against the operational deterministic model and its ensemble open-loop counterpart, both running without HS assimilation. Results show that an intermediate localization radius of 35–50 km yields a slightly lower root mean square error (RMSE), and a better spread–skill than the strategy of assimilating all the observations from a whole mountain range. Significant continuous ranked probability score (CRPS) improvements of about 13 % are obtained in the areas where the open-loop modeling errors are the largest, e.g., the Haute-Ariège, Andorra, and the extreme southern Alps. Over these areas, weather station observations are generally sparser, resulting in more uncertain meteorological analyses and, therefore, snow simulations. In situ HS observations thus show an interesting complementarity ... Article in Journal/Newspaper The Cryosphere Université Toulouse III - Paul Sabatier: HAL-UPS The Cryosphere 16 4 1281 1298 |