An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions

International audience Abstract. High-quality volcanic ash forecasts are crucial to minimize the economic impact of volcanic hazards on air traffic. Decision-making is usually based on numerical dispersion modelling with only one model realization. Given the inherent uncertainty of such an approach,...

Full description

Bibliographic Details
Published in:Natural Hazards and Earth System Sciences
Main Authors: Plu, Matthieu, Scherllin-Pirscher, Barbara, Arnold Arias, Delia, Baro, Rocio, Bigeard, Guillaume, Bugliaro, Luca, Carvalho, Ana, El Amraoui, Laaziz, Eschbacher, Kurt, Hirtl, Marcus, Maurer, Christian, Mulder, Marie, Piontek, Dennis, Robertson, Lennart, Rokitansky, Carl-Herbert, Zobl, Fritz, Zopp, Raimund
Other Authors: Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-03484552
https://hal.science/hal-03484552/document
https://hal.science/hal-03484552/file/nhess-21-2973-2021.pdf
https://doi.org/10.5194/nhess-21-2973-2021
id ftutoulouse3hal:oai:HAL:hal-03484552v1
record_format openpolar
institution Open Polar
collection Université Toulouse III - Paul Sabatier: HAL-UPS
op_collection_id ftutoulouse3hal
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Plu, Matthieu
Scherllin-Pirscher, Barbara
Arnold Arias, Delia
Baro, Rocio
Bigeard, Guillaume
Bugliaro, Luca
Carvalho, Ana
El Amraoui, Laaziz
Eschbacher, Kurt
Hirtl, Marcus
Maurer, Christian
Mulder, Marie
Piontek, Dennis
Robertson, Lennart
Rokitansky, Carl-Herbert
Zobl, Fritz
Zopp, Raimund
An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience Abstract. High-quality volcanic ash forecasts are crucial to minimize the economic impact of volcanic hazards on air traffic. Decision-making is usually based on numerical dispersion modelling with only one model realization. Given the inherent uncertainty of such an approach, a multi-model multi-source term ensemble has been designed and evaluated for the Eyjafjallajökull eruption in May 2010. Its use for flight planning is discussed. Two multi-model ensembles were built: the first is based on the output of four dispersion models and their own implementation of ash ejection. All a priori model source terms were constrained by observational evidence of the volcanic ash cloud top as a function of time. The second ensemble is based on the same four dispersion models, which were run with three additional source terms: (i) a source term obtained from a model background constrained with satellite data (a posteriori source term), (ii) its lower-bound estimate and (iii) its upper-bound estimate. The a priori ensemble gives valuable information about the probability of ash dispersion during the early phase of the eruption, when observational evidence is limited. However, its evaluation with observational data reveals lower quality compared to the second ensemble. While the second ensemble ash column load and ash horizontal location compare well to satellite observations, 3D ash concentrations are negatively biased. This might be caused by the vertical distribution of ash, which is too much diluted in all model runs, probably due to defaults in the a posteriori source term and vertical transport and/or diffusion processes in all models. Relevant products for the air traffic management are horizontal maps of ash concentration quantiles (median, 75 %, 99 %) at a finely resolved flight level grid as well as cross sections. These maps enable cost-optimized consideration of volcanic hazards and could result in much fewer flight cancellations, reroutings and traffic flow congestions. In addition, they ...
author2 Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Plu, Matthieu
Scherllin-Pirscher, Barbara
Arnold Arias, Delia
Baro, Rocio
Bigeard, Guillaume
Bugliaro, Luca
Carvalho, Ana
El Amraoui, Laaziz
Eschbacher, Kurt
Hirtl, Marcus
Maurer, Christian
Mulder, Marie
Piontek, Dennis
Robertson, Lennart
Rokitansky, Carl-Herbert
Zobl, Fritz
Zopp, Raimund
author_facet Plu, Matthieu
Scherllin-Pirscher, Barbara
Arnold Arias, Delia
Baro, Rocio
Bigeard, Guillaume
Bugliaro, Luca
Carvalho, Ana
El Amraoui, Laaziz
Eschbacher, Kurt
Hirtl, Marcus
Maurer, Christian
Mulder, Marie
Piontek, Dennis
Robertson, Lennart
Rokitansky, Carl-Herbert
Zobl, Fritz
Zopp, Raimund
author_sort Plu, Matthieu
title An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
title_short An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
title_full An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
title_fullStr An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
title_full_unstemmed An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
title_sort ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
publisher HAL CCSD
publishDate 2021
url https://hal.science/hal-03484552
https://hal.science/hal-03484552/document
https://hal.science/hal-03484552/file/nhess-21-2973-2021.pdf
https://doi.org/10.5194/nhess-21-2973-2021
genre Eyjafjallajökull
genre_facet Eyjafjallajökull
op_source ISSN: 1561-8633
EISSN: 1684-9981
Natural Hazards and Earth System Sciences
https://hal.science/hal-03484552
Natural Hazards and Earth System Sciences, 2021, 21 (10), pp.2973-2992. ⟨10.5194/nhess-21-2973-2021⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/nhess-21-2973-2021
hal-03484552
https://hal.science/hal-03484552
https://hal.science/hal-03484552/document
https://hal.science/hal-03484552/file/nhess-21-2973-2021.pdf
doi:10.5194/nhess-21-2973-2021
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/nhess-21-2973-2021
container_title Natural Hazards and Earth System Sciences
container_volume 21
container_issue 10
container_start_page 2973
op_container_end_page 2992
_version_ 1785582825330704384
spelling ftutoulouse3hal:oai:HAL:hal-03484552v1 2023-12-17T10:29:56+01:00 An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions Plu, Matthieu Scherllin-Pirscher, Barbara Arnold Arias, Delia Baro, Rocio Bigeard, Guillaume Bugliaro, Luca Carvalho, Ana El Amraoui, Laaziz Eschbacher, Kurt Hirtl, Marcus Maurer, Christian Mulder, Marie Piontek, Dennis Robertson, Lennart Rokitansky, Carl-Herbert Zobl, Fritz Zopp, Raimund Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) 2021 https://hal.science/hal-03484552 https://hal.science/hal-03484552/document https://hal.science/hal-03484552/file/nhess-21-2973-2021.pdf https://doi.org/10.5194/nhess-21-2973-2021 en eng HAL CCSD Copernicus Publ. / European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/nhess-21-2973-2021 hal-03484552 https://hal.science/hal-03484552 https://hal.science/hal-03484552/document https://hal.science/hal-03484552/file/nhess-21-2973-2021.pdf doi:10.5194/nhess-21-2973-2021 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1561-8633 EISSN: 1684-9981 Natural Hazards and Earth System Sciences https://hal.science/hal-03484552 Natural Hazards and Earth System Sciences, 2021, 21 (10), pp.2973-2992. ⟨10.5194/nhess-21-2973-2021⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2021 ftutoulouse3hal https://doi.org/10.5194/nhess-21-2973-2021 2023-11-22T17:55:03Z International audience Abstract. High-quality volcanic ash forecasts are crucial to minimize the economic impact of volcanic hazards on air traffic. Decision-making is usually based on numerical dispersion modelling with only one model realization. Given the inherent uncertainty of such an approach, a multi-model multi-source term ensemble has been designed and evaluated for the Eyjafjallajökull eruption in May 2010. Its use for flight planning is discussed. Two multi-model ensembles were built: the first is based on the output of four dispersion models and their own implementation of ash ejection. All a priori model source terms were constrained by observational evidence of the volcanic ash cloud top as a function of time. The second ensemble is based on the same four dispersion models, which were run with three additional source terms: (i) a source term obtained from a model background constrained with satellite data (a posteriori source term), (ii) its lower-bound estimate and (iii) its upper-bound estimate. The a priori ensemble gives valuable information about the probability of ash dispersion during the early phase of the eruption, when observational evidence is limited. However, its evaluation with observational data reveals lower quality compared to the second ensemble. While the second ensemble ash column load and ash horizontal location compare well to satellite observations, 3D ash concentrations are negatively biased. This might be caused by the vertical distribution of ash, which is too much diluted in all model runs, probably due to defaults in the a posteriori source term and vertical transport and/or diffusion processes in all models. Relevant products for the air traffic management are horizontal maps of ash concentration quantiles (median, 75 %, 99 %) at a finely resolved flight level grid as well as cross sections. These maps enable cost-optimized consideration of volcanic hazards and could result in much fewer flight cancellations, reroutings and traffic flow congestions. In addition, they ... Article in Journal/Newspaper Eyjafjallajökull Université Toulouse III - Paul Sabatier: HAL-UPS Natural Hazards and Earth System Sciences 21 10 2973 2992