Influence of grain shape on light penetration in snow

International audience The energy budget and the photochemistry of a snowpack depend greatly on the penetration of solar radiation in snow. Below the snow surface, spectral irradiance decreases exponentially with depth with a decay constant called the asymptotic flux extinction coefficient. As with...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Libois, Q, Picard, G., France, J., L, Arnaud, L., Dumont, Marie, Carmagnola, C., M, King, M., D
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Earth Sciences Egham, Royal Holloway University of London (RHUL), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://hal.science/hal-03080354
https://hal.science/hal-03080354/document
https://hal.science/hal-03080354/file/Libois2013_Light_Penetration_Snow.pdf
https://doi.org/10.5194/tc-7-1803-2013
id ftutoulouse3hal:oai:HAL:hal-03080354v1
record_format openpolar
institution Open Polar
collection Université Toulouse III - Paul Sabatier: HAL-UPS
op_collection_id ftutoulouse3hal
language English
topic [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
spellingShingle [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
Libois, Q
Picard, G.
France, J., L
Arnaud, L.
Dumont, Marie
Carmagnola, C., M
King, M., D
Influence of grain shape on light penetration in snow
topic_facet [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
description International audience The energy budget and the photochemistry of a snowpack depend greatly on the penetration of solar radiation in snow. Below the snow surface, spectral irradiance decreases exponentially with depth with a decay constant called the asymptotic flux extinction coefficient. As with the albedo of the snowpack, the asymptotic flux extinction coefficient depends on snow grain shape. While representing snow by a collection of spherical particles has been successful in the numerical computation of albedo, such a description poorly explains the decrease of irradiance in snow with depth. Here we explore the limits of the spherical representation. Under the assumption of geometric optics and weak absorption by snow, the grain shape can be simply described by two parameters: the absorption enhancement parameter B and the geometric asymmetry factor gG. Theoretical calculations show that the albedo depends on the ratio B/(1-gG) and the asymptotic flux extinction coefficient depends on the product B(1-gG). To understand the influence of grain shape, the values of B and gG are calculated for a variety of simple geometric shapes using ray tracing simulations. The results show that B and (1-gG) generally covary so that the asymptotic flux extinction coefficient exhibits larger sensitivity to the grain shape than albedo. In particular it is found that spherical grains propagate light deeper than any other investigated shape. In a second step, we developed a method to estimate B from optical measurements in snow. A multi-layer, two-stream, radiative transfer model, with explicit grain shape dependence, is used to retrieve values of the B parameter of snow by comparing the model to joint measurements of reflectance and irradiance profiles. Such measurements were performed in Antarctica and in the Alps yielding estimates of B between 0.8 and 2.0. In addition, values of B were estimated from various measurements found in the literature, leading to a wider range of values (1.0–9.9) which may be partially explained ...
author2 Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Department of Earth Sciences Egham
Royal Holloway University of London (RHUL)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Libois, Q
Picard, G.
France, J., L
Arnaud, L.
Dumont, Marie
Carmagnola, C., M
King, M., D
author_facet Libois, Q
Picard, G.
France, J., L
Arnaud, L.
Dumont, Marie
Carmagnola, C., M
King, M., D
author_sort Libois, Q
title Influence of grain shape on light penetration in snow
title_short Influence of grain shape on light penetration in snow
title_full Influence of grain shape on light penetration in snow
title_fullStr Influence of grain shape on light penetration in snow
title_full_unstemmed Influence of grain shape on light penetration in snow
title_sort influence of grain shape on light penetration in snow
publisher HAL CCSD
publishDate 2013
url https://hal.science/hal-03080354
https://hal.science/hal-03080354/document
https://hal.science/hal-03080354/file/Libois2013_Light_Penetration_Snow.pdf
https://doi.org/10.5194/tc-7-1803-2013
genre Antarc*
Antarctica
The Cryosphere
genre_facet Antarc*
Antarctica
The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal.science/hal-03080354
The Cryosphere, 2013, 7 (6), pp.1803-1818. ⟨10.5194/tc-7-1803-2013⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-7-1803-2013
hal-03080354
https://hal.science/hal-03080354
https://hal.science/hal-03080354/document
https://hal.science/hal-03080354/file/Libois2013_Light_Penetration_Snow.pdf
doi:10.5194/tc-7-1803-2013
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-7-1803-2013
container_title The Cryosphere
container_volume 7
container_issue 6
container_start_page 1803
op_container_end_page 1818
_version_ 1810486648405753856
spelling ftutoulouse3hal:oai:HAL:hal-03080354v1 2024-09-15T17:40:37+00:00 Influence of grain shape on light penetration in snow Libois, Q Picard, G. France, J., L Arnaud, L. Dumont, Marie Carmagnola, C., M King, M., D Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Department of Earth Sciences Egham Royal Holloway University of London (RHUL) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) 2013 https://hal.science/hal-03080354 https://hal.science/hal-03080354/document https://hal.science/hal-03080354/file/Libois2013_Light_Penetration_Snow.pdf https://doi.org/10.5194/tc-7-1803-2013 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-7-1803-2013 hal-03080354 https://hal.science/hal-03080354 https://hal.science/hal-03080354/document https://hal.science/hal-03080354/file/Libois2013_Light_Penetration_Snow.pdf doi:10.5194/tc-7-1803-2013 info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-03080354 The Cryosphere, 2013, 7 (6), pp.1803-1818. ⟨10.5194/tc-7-1803-2013⟩ [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] info:eu-repo/semantics/article Journal articles 2013 ftutoulouse3hal https://doi.org/10.5194/tc-7-1803-2013 2024-06-25T00:13:50Z International audience The energy budget and the photochemistry of a snowpack depend greatly on the penetration of solar radiation in snow. Below the snow surface, spectral irradiance decreases exponentially with depth with a decay constant called the asymptotic flux extinction coefficient. As with the albedo of the snowpack, the asymptotic flux extinction coefficient depends on snow grain shape. While representing snow by a collection of spherical particles has been successful in the numerical computation of albedo, such a description poorly explains the decrease of irradiance in snow with depth. Here we explore the limits of the spherical representation. Under the assumption of geometric optics and weak absorption by snow, the grain shape can be simply described by two parameters: the absorption enhancement parameter B and the geometric asymmetry factor gG. Theoretical calculations show that the albedo depends on the ratio B/(1-gG) and the asymptotic flux extinction coefficient depends on the product B(1-gG). To understand the influence of grain shape, the values of B and gG are calculated for a variety of simple geometric shapes using ray tracing simulations. The results show that B and (1-gG) generally covary so that the asymptotic flux extinction coefficient exhibits larger sensitivity to the grain shape than albedo. In particular it is found that spherical grains propagate light deeper than any other investigated shape. In a second step, we developed a method to estimate B from optical measurements in snow. A multi-layer, two-stream, radiative transfer model, with explicit grain shape dependence, is used to retrieve values of the B parameter of snow by comparing the model to joint measurements of reflectance and irradiance profiles. Such measurements were performed in Antarctica and in the Alps yielding estimates of B between 0.8 and 2.0. In addition, values of B were estimated from various measurements found in the literature, leading to a wider range of values (1.0–9.9) which may be partially explained ... Article in Journal/Newspaper Antarc* Antarctica The Cryosphere Université Toulouse III - Paul Sabatier: HAL-UPS The Cryosphere 7 6 1803 1818