Assessing Changes in the Abundance of the Continental Population of Scaup Using a Hierarchical Spatio-Temporal Model
In ecological studies, the goal is often to describe and gain further insight into ecological processes underlying the data collected during observational studies. Because of the nature of observational data, it can often be difficult to separate the variation in the data from the underlying process...
Main Author: | |
---|---|
Format: | Text |
Language: | unknown |
Published: |
DigitalCommons@USU
2012
|
Subjects: | |
Online Access: | https://digitalcommons.usu.edu/gradreports/106 https://doi.org/10.26076/1561-203c https://digitalcommons.usu.edu/context/gradreports/article/1101/viewcontent/Statistics_Thesis.pdf |
Summary: | In ecological studies, the goal is often to describe and gain further insight into ecological processes underlying the data collected during observational studies. Because of the nature of observational data, it can often be difficult to separate the variation in the data from the underlying process or 'state dynamics.' In order to better address this issue, it is becoming increasingly common for researchers to use hierarchical models. Hierarchical spatial, temporal, and spatio-temporal models allow for the simultaneous modeling of both first and second order processes, thus accounting for underlying autocorrelation in the system while still providing insight into overall spatial and temporal pattern. In this particular study, I use two species of interest, the lesser and greater scaup (Aythya affinis and Aythya marila), as an example of how hierarchical models can be utilized in wildlife management studies. Scaup are the most abundant and widespread diving duck in North America, and are important game species. Since 1978, the continental population of scaup has declined to levels that are 16% below the 1955-2010 average and 34% below the North American Waterfowl Management Plan goal. The greatest decline in abundance of scaup appears to be occurring in the western boreal forest, where populations may have depressed rates of reproductive success, survival, or both. In order to better understand the causes of the decline, and better understand the biology of scaup in general, a level of high importance has been placed on retrospective analyses that determine the spatial and temporal changes in population abundance. In order to implement Bayesian hierarchical models, I used a method called Integrated Nested Laplace Approximation (INLA) to approximate the posterior marginal distribution of the parameters of interest, rather than the more common Markov Chain Monte Carlo (MCMC) approach. Based on preliminary analysis, the data appeared to be overdispersed, containing a disproportionately high number of zeros along ... |
---|