Rapid Assessment of Ecological Resilience in Aspen Communities

In some regions of the West, quaking aspen (Populus tremuloides) has been declining after more than a century of changing human land-use patterns associated with urbanization, fire suppression, predator extirpation, and agriculture. More recently, episodes of large-scale decline, such as Sudden Aspe...

Full description

Bibliographic Details
Main Author: Kirkey, Jason
Format: Text
Language:unknown
Published: Hosted by Utah State University Libraries 2014
Subjects:
Online Access:https://digitalcommons.usu.edu/aspen_bib/7354
http://pqdtopen.proquest.com/doc/1535273421.html?FMT=ABS
id ftutahsudc:oai:digitalcommons.usu.edu:aspen_bib-8351
record_format openpolar
institution Open Polar
collection Utah State University: DigitalCommons@USU
op_collection_id ftutahsudc
language unknown
topic Connectivity
Fire
Populus tremuloides
Predation
Rapid assessment
Resilience
Agriculture
Ecology and Evolutionary Biology
Forest Sciences
Genetics and Genomics
Plant Sciences
spellingShingle Connectivity
Fire
Populus tremuloides
Predation
Rapid assessment
Resilience
Agriculture
Ecology and Evolutionary Biology
Forest Sciences
Genetics and Genomics
Plant Sciences
Kirkey, Jason
Rapid Assessment of Ecological Resilience in Aspen Communities
topic_facet Connectivity
Fire
Populus tremuloides
Predation
Rapid assessment
Resilience
Agriculture
Ecology and Evolutionary Biology
Forest Sciences
Genetics and Genomics
Plant Sciences
description In some regions of the West, quaking aspen (Populus tremuloides) has been declining after more than a century of changing human land-use patterns associated with urbanization, fire suppression, predator extirpation, and agriculture. More recently, episodes of large-scale decline, such as Sudden Aspen Decline (SAD), have been identified in association with drought and other inciting and predisposing factors. Although in many instances decline has been overstated, aspen ecosystems are expected to continue to be vulnerable to climate change and perturbing trends in human land-use patterns. Restoring processes and structures associated with resilience to aspen communities would aid in making them more resilient to future SAD-inciting factors. In this thesis I review the literature on aspen decline, explore the current use of rapid assessment tools in aspen research, identify key indicators of resilience in aspen, and propose a Community-level Aspen Resilience Assessment Tool (CARAT). Aspen decline is a complex and context-dependent phenomenon with multiple inciting and predisposing factors. Climate change-induced drought is a major factor in aspen decline, in addition to chronic ungulate herbivory, habitat fragmentation, fire suppression, and other alterations to stand ecology. Future increases in environmental stressors, such as climate change-induced drought (Worrall et al. 2013) and human land-use patterns associated with urban development and agricultural expansion (Hilty et al. 2006), may require efforts aimed at the conservation and restoration of processes, functions, and structures that will maintain the resilience of aspen communities. An aspen conservation approach that focuses on restoring resilience may prove to be the most robust strategy to maintain aspen communities in the face of uncertain future environmental stressors. Restoring fire regimes and taking action to ease the stress of herbivory on aspen can be instituted through a number of management strategies in both wilderness areas and working landscapes. I present recommendations, such as restoring ecologically effective populations of wolves (Canis lupus) where possible, and implementing prescribed burns, coppicing, and strategically placed exclosures. A rapid assessment tool of resilience in aspen communities would be valuable to conservation and restoration work. Landscape-level, coarse-scale assessments are commonly used to assess cover changes in aspen research to identify decline. I present a review of the literature pertaining to the use of satellite imaging, aerial photography and surveys, and repeat photography in aspen research. While these are ideal tools for detecting cover changes over large areas, they are limited in scale and to documenting exterior stand structures (i.e., canopy and vertical edge structures), and may be inadequate to assess aspen resilience. In order to develop a community-level rapid assessment tool for aspen resilience, I review 6 factors associated with aspen resilience: climate, disturbance, predation, ecophysiology, genetics, and connectivity. These factors are synergistic and interactive. The criteria I use to determine whether they are suitable resilience indicators for use in a rapid assessment tool are 1) is it feasible to rapidly assess the indicator at the community-level? and 2) is the indicator manageable in the context of conservation or restoration goals? I found that the most feasible and effective indicators were predation, disturbance, and connectivity. However, due to the importance of climate, it is essential that it be taken into account in both the application and interpretation of the results of this tool. I propose a resilience index that measures resilience on a 3-point scale, where 1 is the least resilient and 3 is the most. For each indicator, I identify a set of measurable variables. For predation I propose to use wolf population, elk (Cervus elaphus) population density, and browse intensity. For disturbance, I propose to use fire history. I propose to measure connectivity using road density. Finally, I propose to measure general aspen ecology using aspen recruitment ratio, aspen regeneration, and conifer canopy cover. I was unable to validate my rapid assessment tool within the scope of this thesis. Validation of this tool would be the subject of further research, in the form of PhD studies, to determine its effectiveness in measuring resilience. If effective, this tool could be valuable in guiding conservation actions to help make aspen communities more resilient to stressors.
format Text
author Kirkey, Jason
author_facet Kirkey, Jason
author_sort Kirkey, Jason
title Rapid Assessment of Ecological Resilience in Aspen Communities
title_short Rapid Assessment of Ecological Resilience in Aspen Communities
title_full Rapid Assessment of Ecological Resilience in Aspen Communities
title_fullStr Rapid Assessment of Ecological Resilience in Aspen Communities
title_full_unstemmed Rapid Assessment of Ecological Resilience in Aspen Communities
title_sort rapid assessment of ecological resilience in aspen communities
publisher Hosted by Utah State University Libraries
publishDate 2014
url https://digitalcommons.usu.edu/aspen_bib/7354
http://pqdtopen.proquest.com/doc/1535273421.html?FMT=ABS
genre Canis lupus
genre_facet Canis lupus
op_source Aspen Bibliography
op_relation https://digitalcommons.usu.edu/aspen_bib/7354
http://pqdtopen.proquest.com/doc/1535273421.html?FMT=ABS
op_rights Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact the Institutional Repository Librarian at digitalcommons@usu.edu.
op_rightsnorm PDM
_version_ 1766386749717610496
spelling ftutahsudc:oai:digitalcommons.usu.edu:aspen_bib-8351 2023-05-15T15:51:29+02:00 Rapid Assessment of Ecological Resilience in Aspen Communities Kirkey, Jason 2014-01-01T08:00:00Z https://digitalcommons.usu.edu/aspen_bib/7354 http://pqdtopen.proquest.com/doc/1535273421.html?FMT=ABS unknown Hosted by Utah State University Libraries https://digitalcommons.usu.edu/aspen_bib/7354 http://pqdtopen.proquest.com/doc/1535273421.html?FMT=ABS Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact the Institutional Repository Librarian at digitalcommons@usu.edu. PDM Aspen Bibliography Connectivity Fire Populus tremuloides Predation Rapid assessment Resilience Agriculture Ecology and Evolutionary Biology Forest Sciences Genetics and Genomics Plant Sciences text 2014 ftutahsudc 2022-03-07T21:27:19Z In some regions of the West, quaking aspen (Populus tremuloides) has been declining after more than a century of changing human land-use patterns associated with urbanization, fire suppression, predator extirpation, and agriculture. More recently, episodes of large-scale decline, such as Sudden Aspen Decline (SAD), have been identified in association with drought and other inciting and predisposing factors. Although in many instances decline has been overstated, aspen ecosystems are expected to continue to be vulnerable to climate change and perturbing trends in human land-use patterns. Restoring processes and structures associated with resilience to aspen communities would aid in making them more resilient to future SAD-inciting factors. In this thesis I review the literature on aspen decline, explore the current use of rapid assessment tools in aspen research, identify key indicators of resilience in aspen, and propose a Community-level Aspen Resilience Assessment Tool (CARAT). Aspen decline is a complex and context-dependent phenomenon with multiple inciting and predisposing factors. Climate change-induced drought is a major factor in aspen decline, in addition to chronic ungulate herbivory, habitat fragmentation, fire suppression, and other alterations to stand ecology. Future increases in environmental stressors, such as climate change-induced drought (Worrall et al. 2013) and human land-use patterns associated with urban development and agricultural expansion (Hilty et al. 2006), may require efforts aimed at the conservation and restoration of processes, functions, and structures that will maintain the resilience of aspen communities. An aspen conservation approach that focuses on restoring resilience may prove to be the most robust strategy to maintain aspen communities in the face of uncertain future environmental stressors. Restoring fire regimes and taking action to ease the stress of herbivory on aspen can be instituted through a number of management strategies in both wilderness areas and working landscapes. I present recommendations, such as restoring ecologically effective populations of wolves (Canis lupus) where possible, and implementing prescribed burns, coppicing, and strategically placed exclosures. A rapid assessment tool of resilience in aspen communities would be valuable to conservation and restoration work. Landscape-level, coarse-scale assessments are commonly used to assess cover changes in aspen research to identify decline. I present a review of the literature pertaining to the use of satellite imaging, aerial photography and surveys, and repeat photography in aspen research. While these are ideal tools for detecting cover changes over large areas, they are limited in scale and to documenting exterior stand structures (i.e., canopy and vertical edge structures), and may be inadequate to assess aspen resilience. In order to develop a community-level rapid assessment tool for aspen resilience, I review 6 factors associated with aspen resilience: climate, disturbance, predation, ecophysiology, genetics, and connectivity. These factors are synergistic and interactive. The criteria I use to determine whether they are suitable resilience indicators for use in a rapid assessment tool are 1) is it feasible to rapidly assess the indicator at the community-level? and 2) is the indicator manageable in the context of conservation or restoration goals? I found that the most feasible and effective indicators were predation, disturbance, and connectivity. However, due to the importance of climate, it is essential that it be taken into account in both the application and interpretation of the results of this tool. I propose a resilience index that measures resilience on a 3-point scale, where 1 is the least resilient and 3 is the most. For each indicator, I identify a set of measurable variables. For predation I propose to use wolf population, elk (Cervus elaphus) population density, and browse intensity. For disturbance, I propose to use fire history. I propose to measure connectivity using road density. Finally, I propose to measure general aspen ecology using aspen recruitment ratio, aspen regeneration, and conifer canopy cover. I was unable to validate my rapid assessment tool within the scope of this thesis. Validation of this tool would be the subject of further research, in the form of PhD studies, to determine its effectiveness in measuring resilience. If effective, this tool could be valuable in guiding conservation actions to help make aspen communities more resilient to stressors. Text Canis lupus Utah State University: DigitalCommons@USU