A coupled wave-current-structure study for a floating offshore wind turbine platform

In the present study, the influence of ocean conditions, in the combination of wave and current, on the dynamic response of the OC4 semi-submersible platform is numerically studied. The present work is inspired by the recent observations that the presence of current incidence usually induces the vor...

Full description

Bibliographic Details
Main Authors: Li, Xiang, Xiao, Qing, Gonçalves, Rodolfo T., Peyrard, Christophe
Format: Book Part
Language:English
Published: ASME 2022
Subjects:
Online Access:https://strathprints.strath.ac.uk/82047/
https://strathprints.strath.ac.uk/82047/1/Li_etal_ASME2022_A_coupled_wave_current_structure_study_floating_offshore_wind_turbine_platform.pdf
id ftustrathclyde:oai:strathprints.strath.ac.uk:82047
record_format openpolar
spelling ftustrathclyde:oai:strathprints.strath.ac.uk:82047 2024-05-19T07:33:18+00:00 A coupled wave-current-structure study for a floating offshore wind turbine platform Li, Xiang Xiao, Qing Gonçalves, Rodolfo T. Peyrard, Christophe 2022-06-10 text https://strathprints.strath.ac.uk/82047/ https://strathprints.strath.ac.uk/82047/1/Li_etal_ASME2022_A_coupled_wave_current_structure_study_floating_offshore_wind_turbine_platform.pdf en eng ASME https://strathprints.strath.ac.uk/82047/1/Li_etal_ASME2022_A_coupled_wave_current_structure_study_floating_offshore_wind_turbine_platform.pdf Li, Xiang <https://strathprints.strath.ac.uk/view/author/1221169.html> and Xiao, Qing <https://strathprints.strath.ac.uk/view/author/567106.html> and Gonçalves, Rodolfo T. and Peyrard, Christophe; (2022 <https://strathprints.strath.ac.uk/view/year/2022.html>) A coupled wave-current-structure study for a floating offshore wind turbine platform. In: Proceedings of the ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. ASME, DEU. Hydraulic engineering. Ocean engineering Naval architecture. Shipbuilding. Marine engineering Book Section NonPeerReviewed 2022 ftustrathclyde 2024-05-01T00:19:52Z In the present study, the influence of ocean conditions, in the combination of wave and current, on the dynamic response of the OC4 semi-submersible platform is numerically studied. The present work is inspired by the recent observations that the presence of current incidence usually induces the vortex-induced motions (VIM) phenomenon of multi-monocolumn platforms, while wave often leads to large inertia force on it. The integration of wave and current may further cause a more complex flow field around the structure than that only wave or current exists. Such VIM is not desirable considering its impact on the fatigue life of the riser, umbilical, and mooring system of the offshore structure due to the resonance behaviour of the VIM. A computational fluid dynamic (CFD) method is adopted to conduct a real-time simulation of the platform’s motion response. The tool is based on an open-source code library OpenFOAM. The results are validated against experiments with current-only conducted in the wave tank. The flow field around the platform and its impact on the structure motion and loading response are studied for a wide range of wave and current conditions. With the given incident waves, the VIM is mitigated for most cases, for a wide range of reduced velocity. This result is of practical interest for the design of FOWT, as VIM are not captured by industrial aero-hydro-mechanical models. Book Part Arctic University of Strathclyde Glasgow: Strathprints
institution Open Polar
collection University of Strathclyde Glasgow: Strathprints
op_collection_id ftustrathclyde
language English
topic Hydraulic engineering. Ocean engineering
Naval architecture. Shipbuilding. Marine engineering
spellingShingle Hydraulic engineering. Ocean engineering
Naval architecture. Shipbuilding. Marine engineering
Li, Xiang
Xiao, Qing
Gonçalves, Rodolfo T.
Peyrard, Christophe
A coupled wave-current-structure study for a floating offshore wind turbine platform
topic_facet Hydraulic engineering. Ocean engineering
Naval architecture. Shipbuilding. Marine engineering
description In the present study, the influence of ocean conditions, in the combination of wave and current, on the dynamic response of the OC4 semi-submersible platform is numerically studied. The present work is inspired by the recent observations that the presence of current incidence usually induces the vortex-induced motions (VIM) phenomenon of multi-monocolumn platforms, while wave often leads to large inertia force on it. The integration of wave and current may further cause a more complex flow field around the structure than that only wave or current exists. Such VIM is not desirable considering its impact on the fatigue life of the riser, umbilical, and mooring system of the offshore structure due to the resonance behaviour of the VIM. A computational fluid dynamic (CFD) method is adopted to conduct a real-time simulation of the platform’s motion response. The tool is based on an open-source code library OpenFOAM. The results are validated against experiments with current-only conducted in the wave tank. The flow field around the platform and its impact on the structure motion and loading response are studied for a wide range of wave and current conditions. With the given incident waves, the VIM is mitigated for most cases, for a wide range of reduced velocity. This result is of practical interest for the design of FOWT, as VIM are not captured by industrial aero-hydro-mechanical models.
format Book Part
author Li, Xiang
Xiao, Qing
Gonçalves, Rodolfo T.
Peyrard, Christophe
author_facet Li, Xiang
Xiao, Qing
Gonçalves, Rodolfo T.
Peyrard, Christophe
author_sort Li, Xiang
title A coupled wave-current-structure study for a floating offshore wind turbine platform
title_short A coupled wave-current-structure study for a floating offshore wind turbine platform
title_full A coupled wave-current-structure study for a floating offshore wind turbine platform
title_fullStr A coupled wave-current-structure study for a floating offshore wind turbine platform
title_full_unstemmed A coupled wave-current-structure study for a floating offshore wind turbine platform
title_sort coupled wave-current-structure study for a floating offshore wind turbine platform
publisher ASME
publishDate 2022
url https://strathprints.strath.ac.uk/82047/
https://strathprints.strath.ac.uk/82047/1/Li_etal_ASME2022_A_coupled_wave_current_structure_study_floating_offshore_wind_turbine_platform.pdf
genre Arctic
genre_facet Arctic
op_relation https://strathprints.strath.ac.uk/82047/1/Li_etal_ASME2022_A_coupled_wave_current_structure_study_floating_offshore_wind_turbine_platform.pdf
Li, Xiang <https://strathprints.strath.ac.uk/view/author/1221169.html> and Xiao, Qing <https://strathprints.strath.ac.uk/view/author/567106.html> and Gonçalves, Rodolfo T. and Peyrard, Christophe; (2022 <https://strathprints.strath.ac.uk/view/year/2022.html>) A coupled wave-current-structure study for a floating offshore wind turbine platform. In: Proceedings of the ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. ASME, DEU.
_version_ 1799471379356057600