Assessment of pipeline walking with coupled triggering mechanisms by finite element approach

Asymmetric loading/unloading profiles during the start-up and shut-down operations of high pressure high temperature pipelines may cause an accumulated axial displacement over several operational cycles known as Pipeline Walking phenomenon. This pipeline walking can be triggered by several factors e...

Full description

Bibliographic Details
Published in:Volume 5B: Pipeline and Riser Technology
Main Authors: Birdas, Michail, Srinil, Narakorn, Van den Abeele, Filip
Format: Book Part
Language:unknown
Published: American Society of Mechanical Engineers (ASME) 2015
Subjects:
Online Access:https://strathprints.strath.ac.uk/54999/
https://doi.org/10.1115/OMAE2015-42101
id ftustrathclyde:oai:strathprints.strath.ac.uk:54999
record_format openpolar
spelling ftustrathclyde:oai:strathprints.strath.ac.uk:54999 2024-04-28T08:04:27+00:00 Assessment of pipeline walking with coupled triggering mechanisms by finite element approach Birdas, Michail Srinil, Narakorn Van den Abeele, Filip 2015 https://strathprints.strath.ac.uk/54999/ https://doi.org/10.1115/OMAE2015-42101 unknown American Society of Mechanical Engineers (ASME) Birdas, Michail and Srinil, Narakorn <https://strathprints.strath.ac.uk/view/author/712203.html> and Van den Abeele, Filip; (2015 <https://strathprints.strath.ac.uk/view/year/2015.html>) Assessment of pipeline walking with coupled triggering mechanisms by finite element approach. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE. American Society of Mechanical Engineers (ASME), CAN. ISBN 9780791856529 <https://strathprints.strath.ac.uk/view/isbn/9780791856529.html> Naval architecture. Shipbuilding. Marine engineering Book Section NonPeerReviewed 2015 ftustrathclyde https://doi.org/10.1115/OMAE2015-42101 2024-04-10T01:05:08Z Asymmetric loading/unloading profiles during the start-up and shut-down operations of high pressure high temperature pipelines may cause an accumulated axial displacement over several operational cycles known as Pipeline Walking phenomenon. This pipeline walking can be triggered by several factors e.g. the seabed slope, riser tension and thermal transients. Several studies have been carried out in the literature regarding the influence from individual factors; nevertheless, very little has been made in the evaluation of coupled triggering mechanisms, common for a pipeline segment. This paper investigates the pipeline walking phenomenon using finite element modelling and analysis software SAGE Profile 3D versus standard analytical formulae. The keys aims are (i) to study the interaction and coupling between the walking triggering mechanisms by comparing coupled and uncoupled analyses, and (ii) to compare the obtained numerical results with analytical predictions, commonly used in the subsea industry. Depending on the pipeline and soil properties, the effect of triggering mechanisms is parametrically investigated with varying pipeline tension and seabed slope for a specific thermal gradient profile. It is found that the common approach to sum up the individual walking rate by the uncoupled analysis for a combination of any two triggering mechanisms, underestimates the walking phenomenon when compared with the coupled analysis. This highlights how attention must be paid to the interaction mechanism. In addition, this study emphasizes that the analytical models severely overestimate the pipeline walking phenomenon, especially when more than one triggering mechanisms are present. Book Part Arctic University of Strathclyde Glasgow: Strathprints Volume 5B: Pipeline and Riser Technology
institution Open Polar
collection University of Strathclyde Glasgow: Strathprints
op_collection_id ftustrathclyde
language unknown
topic Naval architecture. Shipbuilding. Marine engineering
spellingShingle Naval architecture. Shipbuilding. Marine engineering
Birdas, Michail
Srinil, Narakorn
Van den Abeele, Filip
Assessment of pipeline walking with coupled triggering mechanisms by finite element approach
topic_facet Naval architecture. Shipbuilding. Marine engineering
description Asymmetric loading/unloading profiles during the start-up and shut-down operations of high pressure high temperature pipelines may cause an accumulated axial displacement over several operational cycles known as Pipeline Walking phenomenon. This pipeline walking can be triggered by several factors e.g. the seabed slope, riser tension and thermal transients. Several studies have been carried out in the literature regarding the influence from individual factors; nevertheless, very little has been made in the evaluation of coupled triggering mechanisms, common for a pipeline segment. This paper investigates the pipeline walking phenomenon using finite element modelling and analysis software SAGE Profile 3D versus standard analytical formulae. The keys aims are (i) to study the interaction and coupling between the walking triggering mechanisms by comparing coupled and uncoupled analyses, and (ii) to compare the obtained numerical results with analytical predictions, commonly used in the subsea industry. Depending on the pipeline and soil properties, the effect of triggering mechanisms is parametrically investigated with varying pipeline tension and seabed slope for a specific thermal gradient profile. It is found that the common approach to sum up the individual walking rate by the uncoupled analysis for a combination of any two triggering mechanisms, underestimates the walking phenomenon when compared with the coupled analysis. This highlights how attention must be paid to the interaction mechanism. In addition, this study emphasizes that the analytical models severely overestimate the pipeline walking phenomenon, especially when more than one triggering mechanisms are present.
format Book Part
author Birdas, Michail
Srinil, Narakorn
Van den Abeele, Filip
author_facet Birdas, Michail
Srinil, Narakorn
Van den Abeele, Filip
author_sort Birdas, Michail
title Assessment of pipeline walking with coupled triggering mechanisms by finite element approach
title_short Assessment of pipeline walking with coupled triggering mechanisms by finite element approach
title_full Assessment of pipeline walking with coupled triggering mechanisms by finite element approach
title_fullStr Assessment of pipeline walking with coupled triggering mechanisms by finite element approach
title_full_unstemmed Assessment of pipeline walking with coupled triggering mechanisms by finite element approach
title_sort assessment of pipeline walking with coupled triggering mechanisms by finite element approach
publisher American Society of Mechanical Engineers (ASME)
publishDate 2015
url https://strathprints.strath.ac.uk/54999/
https://doi.org/10.1115/OMAE2015-42101
genre Arctic
genre_facet Arctic
op_relation Birdas, Michail and Srinil, Narakorn <https://strathprints.strath.ac.uk/view/author/712203.html> and Van den Abeele, Filip; (2015 <https://strathprints.strath.ac.uk/view/year/2015.html>) Assessment of pipeline walking with coupled triggering mechanisms by finite element approach. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE. American Society of Mechanical Engineers (ASME), CAN. ISBN 9780791856529 <https://strathprints.strath.ac.uk/view/isbn/9780791856529.html>
op_doi https://doi.org/10.1115/OMAE2015-42101
container_title Volume 5B: Pipeline and Riser Technology
_version_ 1797575109900238848