Gradients in Season, Latitude, and Sea Ice: Their Effect on Metabolism and Stable Isotopic Composition of Antarctic Micronekton
Respiration, metabolic enzyme assays, and body composition parameters were measured in the Antarctic krill Euphausia superba during the summer, fall and winter on the Western Antarctic Peninsula (WAP). E. superba of all sizes decrease their metabolism from the summer to the winter. These same parame...
Main Author: | |
---|---|
Format: | Doctoral or Postdoctoral Thesis |
Language: | unknown |
Published: |
Digital Commons @ University of South Florida
2013
|
Subjects: | |
Online Access: | https://digitalcommons.usf.edu/etd/4554 https://digitalcommons.usf.edu/context/etd/article/5751/viewcontent/Ombres_usf_0206D_11678.pdf |
id |
ftusouthflorida:oai:digitalcommons.usf.edu:etd-5751 |
---|---|
record_format |
openpolar |
spelling |
ftusouthflorida:oai:digitalcommons.usf.edu:etd-5751 2023-07-30T03:56:40+02:00 Gradients in Season, Latitude, and Sea Ice: Their Effect on Metabolism and Stable Isotopic Composition of Antarctic Micronekton Ombres, Erica H. 2013-01-01T08:00:00Z application/pdf https://digitalcommons.usf.edu/etd/4554 https://digitalcommons.usf.edu/context/etd/article/5751/viewcontent/Ombres_usf_0206D_11678.pdf unknown Digital Commons @ University of South Florida https://digitalcommons.usf.edu/etd/4554 https://digitalcommons.usf.edu/context/etd/article/5751/viewcontent/Ombres_usf_0206D_11678.pdf default USF Tampa Graduate Theses and Dissertations Electrona antarctica Euphausia superba Pleuragramma antarcticum Southern Ocean Western Antarctic Peninsula Ecology and Evolutionary Biology Other Oceanography and Atmospheric Sciences and Meteorology Physiology dissertation 2013 ftusouthflorida 2023-07-13T21:42:00Z Respiration, metabolic enzyme assays, and body composition parameters were measured in the Antarctic krill Euphausia superba during the summer, fall and winter on the Western Antarctic Peninsula (WAP). E. superba of all sizes decrease their metabolism from the summer to the winter. These same parameters were also measured along the WAP during the austral fall 2010. E. superba's enzyme activity indicated that there was a latitudinal gradient to the decline in metabolism along the WAP with the more northerly sites having significantly higher metabolic enzyme activities than the sites to the south. Carbon (δ13C) and nitrogen (δ15N) stable isotopes were measured in E. superba along the WAP to determine if there were any latitudinal trends. δ13C showed a significant trend with latitude with more depleted δ13C values in the southern portion of the WAP. Carbon (δ13C) and nitrogen (δ15N) stable isotopes were also measured in two important prey fishes along the WAP, the silverfish Pleuragramma antarcticum and the myctophid Electrona antarctica. P. antarcticum had a more variable and more enriched δ13C value than E. antarctica indicative of P. antarcticum's more neritic habitat. There were no significant differences between the δ15N values of the two fish, indicating that although they feed in different areas they were feeding at the same trophic level. Carbon (δ13C) and nitrogen (δ15N) stable isotopes were measured in twenty species in the marginal ice zone (MIZ) of the Weddell Sea at the beginning of the austral summer. Samples were taken from under the ice, at the ice edge and in the open ocean. A significant trend in the δ13C values of all species was found with the under-ice δ13C values being more depleted than those in the open ocean. This is most likely due to the reduced atmospheric exchange of CO2, upwelled water with depleted δ13C values, and continuous biological respiration under the ice, all of which contribute to very depleted δ13C values. δ15N values were significantly lower in the open ocean than the other ... Doctoral or Postdoctoral Thesis Antarc* Antarctic Antarctic Krill Antarctic Peninsula Antarctica E. Antarctica Euphausia superba Sea ice Southern Ocean Weddell Sea University of South Florida St. Petersburg: Digital USFSP Antarctic Antarctic Peninsula Austral Southern Ocean The Antarctic Weddell Weddell Sea |
institution |
Open Polar |
collection |
University of South Florida St. Petersburg: Digital USFSP |
op_collection_id |
ftusouthflorida |
language |
unknown |
topic |
Electrona antarctica Euphausia superba Pleuragramma antarcticum Southern Ocean Western Antarctic Peninsula Ecology and Evolutionary Biology Other Oceanography and Atmospheric Sciences and Meteorology Physiology |
spellingShingle |
Electrona antarctica Euphausia superba Pleuragramma antarcticum Southern Ocean Western Antarctic Peninsula Ecology and Evolutionary Biology Other Oceanography and Atmospheric Sciences and Meteorology Physiology Ombres, Erica H. Gradients in Season, Latitude, and Sea Ice: Their Effect on Metabolism and Stable Isotopic Composition of Antarctic Micronekton |
topic_facet |
Electrona antarctica Euphausia superba Pleuragramma antarcticum Southern Ocean Western Antarctic Peninsula Ecology and Evolutionary Biology Other Oceanography and Atmospheric Sciences and Meteorology Physiology |
description |
Respiration, metabolic enzyme assays, and body composition parameters were measured in the Antarctic krill Euphausia superba during the summer, fall and winter on the Western Antarctic Peninsula (WAP). E. superba of all sizes decrease their metabolism from the summer to the winter. These same parameters were also measured along the WAP during the austral fall 2010. E. superba's enzyme activity indicated that there was a latitudinal gradient to the decline in metabolism along the WAP with the more northerly sites having significantly higher metabolic enzyme activities than the sites to the south. Carbon (δ13C) and nitrogen (δ15N) stable isotopes were measured in E. superba along the WAP to determine if there were any latitudinal trends. δ13C showed a significant trend with latitude with more depleted δ13C values in the southern portion of the WAP. Carbon (δ13C) and nitrogen (δ15N) stable isotopes were also measured in two important prey fishes along the WAP, the silverfish Pleuragramma antarcticum and the myctophid Electrona antarctica. P. antarcticum had a more variable and more enriched δ13C value than E. antarctica indicative of P. antarcticum's more neritic habitat. There were no significant differences between the δ15N values of the two fish, indicating that although they feed in different areas they were feeding at the same trophic level. Carbon (δ13C) and nitrogen (δ15N) stable isotopes were measured in twenty species in the marginal ice zone (MIZ) of the Weddell Sea at the beginning of the austral summer. Samples were taken from under the ice, at the ice edge and in the open ocean. A significant trend in the δ13C values of all species was found with the under-ice δ13C values being more depleted than those in the open ocean. This is most likely due to the reduced atmospheric exchange of CO2, upwelled water with depleted δ13C values, and continuous biological respiration under the ice, all of which contribute to very depleted δ13C values. δ15N values were significantly lower in the open ocean than the other ... |
format |
Doctoral or Postdoctoral Thesis |
author |
Ombres, Erica H. |
author_facet |
Ombres, Erica H. |
author_sort |
Ombres, Erica H. |
title |
Gradients in Season, Latitude, and Sea Ice: Their Effect on Metabolism and Stable Isotopic Composition of Antarctic Micronekton |
title_short |
Gradients in Season, Latitude, and Sea Ice: Their Effect on Metabolism and Stable Isotopic Composition of Antarctic Micronekton |
title_full |
Gradients in Season, Latitude, and Sea Ice: Their Effect on Metabolism and Stable Isotopic Composition of Antarctic Micronekton |
title_fullStr |
Gradients in Season, Latitude, and Sea Ice: Their Effect on Metabolism and Stable Isotopic Composition of Antarctic Micronekton |
title_full_unstemmed |
Gradients in Season, Latitude, and Sea Ice: Their Effect on Metabolism and Stable Isotopic Composition of Antarctic Micronekton |
title_sort |
gradients in season, latitude, and sea ice: their effect on metabolism and stable isotopic composition of antarctic micronekton |
publisher |
Digital Commons @ University of South Florida |
publishDate |
2013 |
url |
https://digitalcommons.usf.edu/etd/4554 https://digitalcommons.usf.edu/context/etd/article/5751/viewcontent/Ombres_usf_0206D_11678.pdf |
geographic |
Antarctic Antarctic Peninsula Austral Southern Ocean The Antarctic Weddell Weddell Sea |
geographic_facet |
Antarctic Antarctic Peninsula Austral Southern Ocean The Antarctic Weddell Weddell Sea |
genre |
Antarc* Antarctic Antarctic Krill Antarctic Peninsula Antarctica E. Antarctica Euphausia superba Sea ice Southern Ocean Weddell Sea |
genre_facet |
Antarc* Antarctic Antarctic Krill Antarctic Peninsula Antarctica E. Antarctica Euphausia superba Sea ice Southern Ocean Weddell Sea |
op_source |
USF Tampa Graduate Theses and Dissertations |
op_relation |
https://digitalcommons.usf.edu/etd/4554 https://digitalcommons.usf.edu/context/etd/article/5751/viewcontent/Ombres_usf_0206D_11678.pdf |
op_rights |
default |
_version_ |
1772814100321009664 |