Mercury partitioning in super-permafrost groundwater, Truelove Lowland, Devon Island, Nunavut

The objective of this study was to determine the dominant biogeochemical controls on mercury partitioning in super-permafrost groundwater at Truelove Lowland, Devon Island, Nunavut. Mercury partitioning in snow, ephemeral standing water, and super-permafrost groundwater was investigated. Results ind...

Full description

Bibliographic Details
Main Author: Dickson, Alanna L
Other Authors: Siciliano, Steven, Si, Bing C., Peak, J. Derek, Knight, J. Diane, Fleming, Ian R.
Format: Thesis
Language:English
Published: University of Saskatchewan 2008
Subjects:
Online Access:http://hdl.handle.net/10388/etd-07192008-155026
Description
Summary:The objective of this study was to determine the dominant biogeochemical controls on mercury partitioning in super-permafrost groundwater at Truelove Lowland, Devon Island, Nunavut. Mercury partitioning in snow, ephemeral standing water, and super-permafrost groundwater was investigated. Results indicate that partitioning differs between matrices, and that particulate mercury is spatially and temporally dynamic in Truelove Lowland groundwater. Particulate mercury in groundwater was 73 % of total mercury, while snow had only 22 % particulate mercury. Particulate mercury in groundwater rose by over 20 % from Julian day 181 to 189, and decreased slightly on Julian day 191. No single geochemical parameter was a good predictor of particulate mercury concentrations. To expand upon the findings of the field study a laboratory microcosm study was conducted to determine whether certain biogeochemical processes influence mercury partitioning in super-permafrost groundwater. Particulate mercury in the dissimilatory iron reducing bacteria inhibited microcosm was 61 % of total mercury, approximately 18 % lower than in all other treatments. Iron (III) concentrations had a positive correlation with particulate mercury while chloride concentrations had a negative correlation with particulate mercury. Sulfate reducing bacteria were not found to influence mercury partitioning.