Cold-Active Shewanella glacialimarina TZS-4(T) nov. Features a Temperature-Dependent Fatty Acid Profile and Putative Sialic Acid Metabolism

Species of genus Shewanella are among the most frequently identified psychrotrophic bacteria. Here, we have studied the cellular properties, growth dynamics, and stress conditions of cold-active Shewanella strain #4, which was previously isolated from Baltic Sea ice. The cells are rod-shaped of simi...

Full description

Bibliographic Details
Published in:Frontiers in Microbiology
Main Authors: Qasim, Muhammad Suleman, Lampi, Mirka, Heinonen, Minna-Maria K., Garrido-Zabala, Berta, Bamford, Dennis H., Kaekelae, Reijo, Roine, Elina, Sarin, Leif Peter
Format: Article in Journal/Newspaper
Language:English
Published: Univ Helsinki, Fac Biol & Environm Sci, RNAcious Lab, Mol & Integrat Biosciences Res Programme, Helsinki, Finland.;Univ Helsinki, Doctoral Programme Microbiol & Biotechnol, Helsinki, Finland. 2021
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-512493
https://doi.org/10.3389/fmicb.2021.737641
Description
Summary:Species of genus Shewanella are among the most frequently identified psychrotrophic bacteria. Here, we have studied the cellular properties, growth dynamics, and stress conditions of cold-active Shewanella strain #4, which was previously isolated from Baltic Sea ice. The cells are rod-shaped of similar to 2 mu m in length and 0.5 mu m in diameter, and they grow between 0 and 25 degrees C, with an optimum at 15 degrees C. The bacterium grows at a wide range of conditions, including 0.5-5.5% w/v NaCl (optimum 0.5-2% w/v NaCl), pH 5.5-10 (optimum pH 7.0), and up to 1mM hydrogen peroxide. In keeping with its adaptation to cold habitats, some polyunsaturated fatty acids, such as stearidonic acid (18:4n-3), eicosatetraenoic acid (20:4n-3), and eicosapentaenoic acid (20:5n-3), are produced at a higher level at low temperature. The genome is 4,456kb in size and has a GC content of 41.12%. Uniquely, strain #4 possesses genes for sialic acid metabolism and utilizes N-acetyl neuraminic acid as a carbon source. Interestingly, it also encodes for cytochrome c3 genes, which are known to facilitate environmental adaptation, including elevated temperatures and exposure to UV radiation. Phylogenetic analysis based on a consensus sequence of the seven 16S rRNA genes indicated that strain #4 belongs to genus Shewanella, closely associated with Shewanella aestuarii with a similar to 97% similarity, but with a low DNA-DNA hybridization (DDH) level of similar to 21%. However, average nucleotide identity (ANI) analysis defines strain #4 as a separate Shewanella species (ANI score=76). Further phylogenetic analysis based on the 92 most conserved genes places Shewanella strain #4 into a distinct phylogenetic clade with other cold-active marine Shewanella species. Considering the phylogenetic, phenotypic, and molecular characterization, we conclude that Shewanella strain #4 is a novel species and name it Shewanella glacialimarina sp. nov. TZS-4(T), where glacialimarina means sea ice. Consequently, S. glacialimarina TZS-4(T) constitutes a ...