Deep neural network-estimated electrocardiographic age as a mortality predictor
The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information. T...
Published in: | Nature Communications |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Uppsala universitet, Avdelningen för systemteknik
2021
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-456162 https://doi.org/10.1038/s41467-021-25351-7 |
id |
ftuppsalauniv:oai:DiVA.org:uu-456162 |
---|---|
record_format |
openpolar |
spelling |
ftuppsalauniv:oai:DiVA.org:uu-456162 2024-02-11T10:08:22+01:00 Deep neural network-estimated electrocardiographic age as a mortality predictor Lima, Emilly M. Horta Ribeiro, Antônio Paixao, Gabriela M. M. Horta Ribeiro, Manoel Pinto-Filho, Marcelo M. Gomes, Paulo R. Oliveira, Derick M. Sabino, Ester C. Duncan, Bruce B. Giatti, Luana Barreto, Sandhi M. Meira Jr, Wagner Schön, Thomas B. Ribeiro, Antonio Luiz P. 2021 application/pdf http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-456162 https://doi.org/10.1038/s41467-021-25351-7 eng eng Uppsala universitet, Avdelningen för systemteknik Uppsala universitet, Artificiell intelligens Univ Fed Minas Gerais, Hosp Clin, Telehlth Ctr, Belo Horizonte, MG, Brazil; Univ Fed Minas Gerais, Fac Med, Belo Horizonte, MG, Brazil Univ Fed Minas Gerais, Dept Ciencia Comp, Belo Horizonte, MG, Brazil Ecole Polytech Fed Lausanne, Lausanne, Switzerland Univ Sao Paulo, Inst Med Trop, Fac Med, Sao Paulo, Brazil Univ Fed Rio Grande do Sul, Programa Posgrad Epidemiol, Porto Alegre, RS, Brazil.;Univ Fed Rio Grande do Sul, Hosp Clin Porto Alegre, Porto Alegre, RS, Brazil Univ Fed Minas Gerais, Fac Med, Belo Horizonte, MG, Brazil Nature Communications, 2021, 12:1, orcid:0000-0003-3632-8529 orcid:0000-0003-1349-1745 orcid:0000-0001-5454-2460 orcid:0000-0001-5183-234X http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-456162 doi:10.1038/s41467-021-25351-7 PMID 34433816 ISI:000691022000010 info:eu-repo/semantics/openAccess Cardiac and Cardiovascular Systems Kardiologi Article in journal info:eu-repo/semantics/article text 2021 ftuppsalauniv https://doi.org/10.1038/s41467-021-25351-7 2024-01-17T23:33:09Z The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information. The electrocardiogram (ECG) is the most commonly used exam for the evaluation of cardiovascular diseases. Here we propose that the age predicted by artificial intelligence (AI) from the raw ECG (ECG-age) can be a measure of cardiovascular health. A deep neural network is trained to predict a patient's age from the 12-lead ECG in the CODE study cohort (n = 1,558,415 patients). On a 15% hold-out split, patients with ECG-age more than 8 years greater than the chronological age have a higher mortality rate (hazard ratio (HR) 1.79, p < 0.001), whereas those with ECG-age more than 8 years smaller, have a lower mortality rate (HR 0.78, p < 0.001). Similar results are obtained in the external cohorts ELSA-Brasil (n = 14,236) and SaMi-Trop (n = 1,631). Moreover, even for apparent normal ECGs, the predicted ECG-age gap from the chronological age remains a statistically significant risk predictor. These results show that the AI-enabled analysis of the ECG can add prognostic information. These authors contributed equally: Emilly M. Lima, Antônio H. Ribeiro, Gabriela M. M. Paixão Article in Journal/Newspaper sami Uppsala University: Publications (DiVA) Nature Communications 12 1 |
institution |
Open Polar |
collection |
Uppsala University: Publications (DiVA) |
op_collection_id |
ftuppsalauniv |
language |
English |
topic |
Cardiac and Cardiovascular Systems Kardiologi |
spellingShingle |
Cardiac and Cardiovascular Systems Kardiologi Lima, Emilly M. Horta Ribeiro, Antônio Paixao, Gabriela M. M. Horta Ribeiro, Manoel Pinto-Filho, Marcelo M. Gomes, Paulo R. Oliveira, Derick M. Sabino, Ester C. Duncan, Bruce B. Giatti, Luana Barreto, Sandhi M. Meira Jr, Wagner Schön, Thomas B. Ribeiro, Antonio Luiz P. Deep neural network-estimated electrocardiographic age as a mortality predictor |
topic_facet |
Cardiac and Cardiovascular Systems Kardiologi |
description |
The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information. The electrocardiogram (ECG) is the most commonly used exam for the evaluation of cardiovascular diseases. Here we propose that the age predicted by artificial intelligence (AI) from the raw ECG (ECG-age) can be a measure of cardiovascular health. A deep neural network is trained to predict a patient's age from the 12-lead ECG in the CODE study cohort (n = 1,558,415 patients). On a 15% hold-out split, patients with ECG-age more than 8 years greater than the chronological age have a higher mortality rate (hazard ratio (HR) 1.79, p < 0.001), whereas those with ECG-age more than 8 years smaller, have a lower mortality rate (HR 0.78, p < 0.001). Similar results are obtained in the external cohorts ELSA-Brasil (n = 14,236) and SaMi-Trop (n = 1,631). Moreover, even for apparent normal ECGs, the predicted ECG-age gap from the chronological age remains a statistically significant risk predictor. These results show that the AI-enabled analysis of the ECG can add prognostic information. These authors contributed equally: Emilly M. Lima, Antônio H. Ribeiro, Gabriela M. M. Paixão |
format |
Article in Journal/Newspaper |
author |
Lima, Emilly M. Horta Ribeiro, Antônio Paixao, Gabriela M. M. Horta Ribeiro, Manoel Pinto-Filho, Marcelo M. Gomes, Paulo R. Oliveira, Derick M. Sabino, Ester C. Duncan, Bruce B. Giatti, Luana Barreto, Sandhi M. Meira Jr, Wagner Schön, Thomas B. Ribeiro, Antonio Luiz P. |
author_facet |
Lima, Emilly M. Horta Ribeiro, Antônio Paixao, Gabriela M. M. Horta Ribeiro, Manoel Pinto-Filho, Marcelo M. Gomes, Paulo R. Oliveira, Derick M. Sabino, Ester C. Duncan, Bruce B. Giatti, Luana Barreto, Sandhi M. Meira Jr, Wagner Schön, Thomas B. Ribeiro, Antonio Luiz P. |
author_sort |
Lima, Emilly M. |
title |
Deep neural network-estimated electrocardiographic age as a mortality predictor |
title_short |
Deep neural network-estimated electrocardiographic age as a mortality predictor |
title_full |
Deep neural network-estimated electrocardiographic age as a mortality predictor |
title_fullStr |
Deep neural network-estimated electrocardiographic age as a mortality predictor |
title_full_unstemmed |
Deep neural network-estimated electrocardiographic age as a mortality predictor |
title_sort |
deep neural network-estimated electrocardiographic age as a mortality predictor |
publisher |
Uppsala universitet, Avdelningen för systemteknik |
publishDate |
2021 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-456162 https://doi.org/10.1038/s41467-021-25351-7 |
genre |
sami |
genre_facet |
sami |
op_relation |
Nature Communications, 2021, 12:1, orcid:0000-0003-3632-8529 orcid:0000-0003-1349-1745 orcid:0000-0001-5454-2460 orcid:0000-0001-5183-234X http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-456162 doi:10.1038/s41467-021-25351-7 PMID 34433816 ISI:000691022000010 |
op_rights |
info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.1038/s41467-021-25351-7 |
container_title |
Nature Communications |
container_volume |
12 |
container_issue |
1 |
_version_ |
1790607518326587392 |