Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow

The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numeric...

Full description

Bibliographic Details
Published in:Science Advances
Main Authors: Kulessa, Bernd, Hubbard, Alun L., Booth, Adam D., Bougamont, Marion, Dow, Christine F., Doyle, Samuel H., Christoffersen, Poul, Lindback, Katrin, Pettersson, Rickard, Fitzpatrick, Andrew A. W., Jones, Glenn A.
Format: Article in Journal/Newspaper
Language:English
Published: Uppsala universitet, Luft-, vatten- och landskapslära 2017
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-336647
https://doi.org/10.1126/sciadv.1603071
id ftuppsalauniv:oai:DiVA.org:uu-336647
record_format openpolar
spelling ftuppsalauniv:oai:DiVA.org:uu-336647 2023-05-15T16:27:11+02:00 Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow Kulessa, Bernd Hubbard, Alun L. Booth, Adam D. Bougamont, Marion Dow, Christine F. Doyle, Samuel H. Christoffersen, Poul Lindback, Katrin Pettersson, Rickard Fitzpatrick, Andrew A. W. Jones, Glenn A. 2017 application/pdf http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-336647 https://doi.org/10.1126/sciadv.1603071 eng eng Uppsala universitet, Luft-, vatten- och landskapslära Swansea Univ, Glaciol Grp, Coll of Sci UiT Arctic Univ Norway, Ctr Arctic Gas Hydrate Environm & Climate, Dept Geosci.; Aberystwyth Univ, Ctr Glaciol, Dept Geog & Earth Sci Univ Leeds, Inst Appl Geosci, Sch Earth & Environm Univ Cambridge, Scott Polar Res Inst, Dept Geog Swansea Univ, Glaciol Grp, Coll Sci, Singleton Pk.; Univ Waterloo, Dept Geog & Environm Management Aberystwyth Univ, Ctr Glaciol, Dept Geog & Earth Sci Norwegian Polar Res Inst, Fram Ctr Swansea Univ, Glaciol Grp, Coll of Sci.; Aberystwyth Univ, Ctr Glaciol, Dept Geog & Earth Sci Science Advances, 2017, 3:8, http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-336647 doi:10.1126/sciadv.1603071 ISI:000411589900043 info:eu-repo/semantics/openAccess Earth and Related Environmental Sciences Geovetenskap och miljövetenskap Physical Geography Naturgeografi Oceanography Hydrology and Water Resources Oceanografi hydrologi och vattenresurser Article in journal info:eu-repo/semantics/article text 2017 ftuppsalauniv https://doi.org/10.1126/sciadv.1603071 2023-02-23T21:52:24Z The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms. Article in Journal/Newspaper Greenland Ice Sheet Uppsala University: Publications (DiVA) Greenland Science Advances 3 8 e1603071
institution Open Polar
collection Uppsala University: Publications (DiVA)
op_collection_id ftuppsalauniv
language English
topic Earth and Related Environmental Sciences
Geovetenskap och miljövetenskap
Physical Geography
Naturgeografi
Oceanography
Hydrology and Water Resources
Oceanografi
hydrologi och vattenresurser
spellingShingle Earth and Related Environmental Sciences
Geovetenskap och miljövetenskap
Physical Geography
Naturgeografi
Oceanography
Hydrology and Water Resources
Oceanografi
hydrologi och vattenresurser
Kulessa, Bernd
Hubbard, Alun L.
Booth, Adam D.
Bougamont, Marion
Dow, Christine F.
Doyle, Samuel H.
Christoffersen, Poul
Lindback, Katrin
Pettersson, Rickard
Fitzpatrick, Andrew A. W.
Jones, Glenn A.
Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow
topic_facet Earth and Related Environmental Sciences
Geovetenskap och miljövetenskap
Physical Geography
Naturgeografi
Oceanography
Hydrology and Water Resources
Oceanografi
hydrologi och vattenresurser
description The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms.
format Article in Journal/Newspaper
author Kulessa, Bernd
Hubbard, Alun L.
Booth, Adam D.
Bougamont, Marion
Dow, Christine F.
Doyle, Samuel H.
Christoffersen, Poul
Lindback, Katrin
Pettersson, Rickard
Fitzpatrick, Andrew A. W.
Jones, Glenn A.
author_facet Kulessa, Bernd
Hubbard, Alun L.
Booth, Adam D.
Bougamont, Marion
Dow, Christine F.
Doyle, Samuel H.
Christoffersen, Poul
Lindback, Katrin
Pettersson, Rickard
Fitzpatrick, Andrew A. W.
Jones, Glenn A.
author_sort Kulessa, Bernd
title Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow
title_short Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow
title_full Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow
title_fullStr Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow
title_full_unstemmed Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow
title_sort seismic evidence for complex sedimentary control of greenland ice sheet flow
publisher Uppsala universitet, Luft-, vatten- och landskapslära
publishDate 2017
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-336647
https://doi.org/10.1126/sciadv.1603071
geographic Greenland
geographic_facet Greenland
genre Greenland
Ice Sheet
genre_facet Greenland
Ice Sheet
op_relation Science Advances, 2017, 3:8,
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-336647
doi:10.1126/sciadv.1603071
ISI:000411589900043
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1126/sciadv.1603071
container_title Science Advances
container_volume 3
container_issue 8
container_start_page e1603071
_version_ 1766016273059151872