Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires

Droughts and climate-change-driven warming are leading to more frequent and intense wildfires1,2,3, arguably contributing to the severe 2019–2020 Australian wildfires4. The environmental and ecological impacts of the fires include loss of habitats and the emission of substantial amounts of atmospher...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Tang, Weiyi, Llort, Joan, Weis, Jakob, Perron, Morgane M. G., Basart, Sara
Other Authors: Barcelona Supercomputing Center
Format: Article in Journal/Newspaper
Language:English
Published: Nature Research 2021
Subjects:
Online Access:http://hdl.handle.net/2117/351768
https://doi.org/10.1038/s41586-021-03805-8
id ftupcatalunyair:oai:upcommons.upc.edu:2117/351768
record_format openpolar
institution Open Polar
collection Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
op_collection_id ftupcatalunyair
language English
topic Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Canvi climàtic
Climatic changes
Droughts
Wildfires--Australia
Atmospheric aerosols
Phytoplankton algal blooms
Atmospheric chemistry
Carbon cycle
Fire ecology
Marine chemistry
Canvis climàtics
spellingShingle Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Canvi climàtic
Climatic changes
Droughts
Wildfires--Australia
Atmospheric aerosols
Phytoplankton algal blooms
Atmospheric chemistry
Carbon cycle
Fire ecology
Marine chemistry
Canvis climàtics
Tang, Weiyi
Llort, Joan
Weis, Jakob
Perron, Morgane M. G.
Basart, Sara
Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
topic_facet Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Canvi climàtic
Climatic changes
Droughts
Wildfires--Australia
Atmospheric aerosols
Phytoplankton algal blooms
Atmospheric chemistry
Carbon cycle
Fire ecology
Marine chemistry
Canvis climàtics
description Droughts and climate-change-driven warming are leading to more frequent and intense wildfires1,2,3, arguably contributing to the severe 2019–2020 Australian wildfires4. The environmental and ecological impacts of the fires include loss of habitats and the emission of substantial amounts of atmospheric aerosols5,6,7. Aerosol emissions from wildfires can lead to the atmospheric transport of macronutrients and bio-essential trace metals such as nitrogen and iron, respectively8,9,10. It has been suggested that the oceanic deposition of wildfire aerosols can relieve nutrient limitations and, consequently, enhance marine productivity11,12, but direct observations are lacking. Here we use satellite and autonomous biogeochemical Argo float data to evaluate the effect of 2019–2020 Australian wildfire aerosol deposition on phytoplankton productivity. We find anomalously widespread phytoplankton blooms from December 2019 to March 2020 in the Southern Ocean downwind of Australia. Aerosol samples originating from the Australian wildfires contained a high iron content and atmospheric trajectories show that these aerosols were likely to be transported to the bloom regions, suggesting that the blooms resulted from the fertilization of the iron-limited waters of the Southern Ocean. Climate models project more frequent and severe wildfires in many regions1,2,3. A greater appreciation of the links between wildfires, pyrogenic aerosols13, nutrient cycling and marine photosynthesis could improve our understanding of the contemporary and glacial–interglacial cycling of atmospheric CO2 and the global climate system. Analyses of satellite aerosol observations used in this study were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. We thank SeaWiFS and MODIS mission scientists and associated NASA personnel for the production of the data used in this research effort. The BGC-Argo data were collected and made freely available by the International Argo Program and the national programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System (https://doi.org/10.17882/42182). W.T. is supported by the Harry H. Hess Postdoctoral Fellowship from Princeton University. N.C. is supported by the “Laboratoire d’Excellence” LabexMER (ANR‐10‐LABX‐19) and co-funded by a grant from the French government under the program “Investissements d’Avenir”. S.B. acknowledges the AXA Research Fund for the support of the long-term research line on Sand and Dust Storms at the Barcelona Supercomputing Center (BSC) and CAMS Global Validation (CAMS-84). P.G.S., J.L., M.M.G.P. and A.R.B. are supported by the Australian Research Council Discovery Projects scheme (DP190103504). P.G.S. and J.W. are supported by the Australian Research Council Centre of Excellence for Climate Extremes (CLEX: CE170100023). J.L. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 754433. A.R.B. is supported by the Australian Research Council Future Fellowship scheme (FT130100037). R.M. is supported by the CSIRO Decadal Climate Forecasting Project. We thank M. Strzelec, M. East, T. Holmes, M. Corkill, S. Meyerink and the Wellington Park Management Trust for help with installation and sampling the Tasmanian aerosol time-series station; A. Townsend for iron aerosol analyses by ICPMS at the University of Tasmania; and A. Benedetti and S. Remy for providing insights on the validation of aerosol reanalysis. Peer Reviewed "Article signat per 15 autors/es: Weiyi Tang, Joan Llort, Jakob Weis, Morgane M. G. Perron, Sara Basart, Zuchuan Li, Shubha Sathyendranath, Thomas Jackson, Estrella Sanz Rodriguez, Bernadette C. Proemse, Andrew R. Bowie, Christina Schallenberg, Peter G. Strutton, Richard Matear & Nicolas Cassar" Postprint (author's final draft)
author2 Barcelona Supercomputing Center
format Article in Journal/Newspaper
author Tang, Weiyi
Llort, Joan
Weis, Jakob
Perron, Morgane M. G.
Basart, Sara
author_facet Tang, Weiyi
Llort, Joan
Weis, Jakob
Perron, Morgane M. G.
Basart, Sara
author_sort Tang, Weiyi
title Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
title_short Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
title_full Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
title_fullStr Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
title_full_unstemmed Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
title_sort widespread phytoplankton blooms triggered by 2019–2020 australian wildfires
publisher Nature Research
publishDate 2021
url http://hdl.handle.net/2117/351768
https://doi.org/10.1038/s41586-021-03805-8
long_lat ENVELOPE(-56.720,-56.720,-63.529,-63.529)
ENVELOPE(-65.133,-65.133,-67.200,-67.200)
geographic Southern Ocean
Rodriguez
Hess
geographic_facet Southern Ocean
Rodriguez
Hess
genre Southern Ocean
genre_facet Southern Ocean
op_relation https://www.nature.com/articles/s41586-021-03805-8
info:eu-repo/grantAgreement/EC/H2020/754433/EU/SupercompuTing And Related applicationS Fellows Program/STARS
Tang, W. [et al.]. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. "Nature", 2021, vol. 597, núm. 7876, p. 370-375.
1476-4687
http://hdl.handle.net/2117/351768
doi:10.1038/s41586-021-03805-8
op_rights Open Access
op_doi https://doi.org/10.1038/s41586-021-03805-8
container_title Nature
container_volume 597
container_issue 7876
container_start_page 370
op_container_end_page 375
_version_ 1766207508122173440
spelling ftupcatalunyair:oai:upcommons.upc.edu:2117/351768 2023-05-15T18:25:50+02:00 Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires Tang, Weiyi Llort, Joan Weis, Jakob Perron, Morgane M. G. Basart, Sara Barcelona Supercomputing Center 2021 6 p. application/pdf http://hdl.handle.net/2117/351768 https://doi.org/10.1038/s41586-021-03805-8 eng eng Nature Research https://www.nature.com/articles/s41586-021-03805-8 info:eu-repo/grantAgreement/EC/H2020/754433/EU/SupercompuTing And Related applicationS Fellows Program/STARS Tang, W. [et al.]. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. "Nature", 2021, vol. 597, núm. 7876, p. 370-375. 1476-4687 http://hdl.handle.net/2117/351768 doi:10.1038/s41586-021-03805-8 Open Access Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Canvi climàtic Climatic changes Droughts Wildfires--Australia Atmospheric aerosols Phytoplankton algal blooms Atmospheric chemistry Carbon cycle Fire ecology Marine chemistry Canvis climàtics Article 2021 ftupcatalunyair https://doi.org/10.1038/s41586-021-03805-8 2022-03-16T00:04:59Z Droughts and climate-change-driven warming are leading to more frequent and intense wildfires1,2,3, arguably contributing to the severe 2019–2020 Australian wildfires4. The environmental and ecological impacts of the fires include loss of habitats and the emission of substantial amounts of atmospheric aerosols5,6,7. Aerosol emissions from wildfires can lead to the atmospheric transport of macronutrients and bio-essential trace metals such as nitrogen and iron, respectively8,9,10. It has been suggested that the oceanic deposition of wildfire aerosols can relieve nutrient limitations and, consequently, enhance marine productivity11,12, but direct observations are lacking. Here we use satellite and autonomous biogeochemical Argo float data to evaluate the effect of 2019–2020 Australian wildfire aerosol deposition on phytoplankton productivity. We find anomalously widespread phytoplankton blooms from December 2019 to March 2020 in the Southern Ocean downwind of Australia. Aerosol samples originating from the Australian wildfires contained a high iron content and atmospheric trajectories show that these aerosols were likely to be transported to the bloom regions, suggesting that the blooms resulted from the fertilization of the iron-limited waters of the Southern Ocean. Climate models project more frequent and severe wildfires in many regions1,2,3. A greater appreciation of the links between wildfires, pyrogenic aerosols13, nutrient cycling and marine photosynthesis could improve our understanding of the contemporary and glacial–interglacial cycling of atmospheric CO2 and the global climate system. Analyses of satellite aerosol observations used in this study were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. We thank SeaWiFS and MODIS mission scientists and associated NASA personnel for the production of the data used in this research effort. The BGC-Argo data were collected and made freely available by the International Argo Program and the national programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System (https://doi.org/10.17882/42182). W.T. is supported by the Harry H. Hess Postdoctoral Fellowship from Princeton University. N.C. is supported by the “Laboratoire d’Excellence” LabexMER (ANR‐10‐LABX‐19) and co-funded by a grant from the French government under the program “Investissements d’Avenir”. S.B. acknowledges the AXA Research Fund for the support of the long-term research line on Sand and Dust Storms at the Barcelona Supercomputing Center (BSC) and CAMS Global Validation (CAMS-84). P.G.S., J.L., M.M.G.P. and A.R.B. are supported by the Australian Research Council Discovery Projects scheme (DP190103504). P.G.S. and J.W. are supported by the Australian Research Council Centre of Excellence for Climate Extremes (CLEX: CE170100023). J.L. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 754433. A.R.B. is supported by the Australian Research Council Future Fellowship scheme (FT130100037). R.M. is supported by the CSIRO Decadal Climate Forecasting Project. We thank M. Strzelec, M. East, T. Holmes, M. Corkill, S. Meyerink and the Wellington Park Management Trust for help with installation and sampling the Tasmanian aerosol time-series station; A. Townsend for iron aerosol analyses by ICPMS at the University of Tasmania; and A. Benedetti and S. Remy for providing insights on the validation of aerosol reanalysis. Peer Reviewed "Article signat per 15 autors/es: Weiyi Tang, Joan Llort, Jakob Weis, Morgane M. G. Perron, Sara Basart, Zuchuan Li, Shubha Sathyendranath, Thomas Jackson, Estrella Sanz Rodriguez, Bernadette C. Proemse, Andrew R. Bowie, Christina Schallenberg, Peter G. Strutton, Richard Matear & Nicolas Cassar" Postprint (author's final draft) Article in Journal/Newspaper Southern Ocean Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge Southern Ocean Rodriguez ENVELOPE(-56.720,-56.720,-63.529,-63.529) Hess ENVELOPE(-65.133,-65.133,-67.200,-67.200) Nature 597 7876 370 375