Event reconstruction for KM3NeT/ORCA using convolutional neural networks
The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino...
Published in: | Journal of Instrumentation |
---|---|
Main Authors: | , , , , , , , , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | http://hdl.handle.net/2117/340267 https://doi.org/10.1088/1748-0221/15/10/P10005 |
id |
ftupcatalunyair:oai:upcommons.upc.edu:2117/340267 |
---|---|
record_format |
openpolar |
spelling |
ftupcatalunyair:oai:upcommons.upc.edu:2117/340267 2024-09-15T18:28:48+00:00 Event reconstruction for KM3NeT/ORCA using convolutional neural networks Aiello, S Albert, A. Alves Garre, Sergio Ameli, F André, Michel Androulakis, Giorgos Anghinolfi, Marco Anguita, M. Anton, Gisela Aublin, J. Bagatelas, Christos Barbarino, G.C. Baret, B. Centre Tecnològic de Vilanova i la Geltrú Universitat Politècnica de Catalunya. LAB - Laboratori d'Aplicacions Bioacústiques 2020-10-01 40 p. application/pdf http://hdl.handle.net/2117/340267 https://doi.org/10.1088/1748-0221/15/10/P10005 eng eng https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005 Aiello, S. [et al.]. Event reconstruction for KM3NeT/ORCA using convolutional neural networks. "Journal of instrumentation", 1 Octubre 2020, vol. 15, núm. P10005, p. 1-40. 1748-0221 http://hdl.handle.net/2117/340267 doi:10.1088/1748-0221/15/10/P10005 Attribution-NonCommercial-NoDerivs 3.0 Spain http://creativecommons.org/licenses/by-nc-nd/3.0/es/ Open Access Àrees temàtiques de la UPC::Física::Física de partícules Telescopes Astrophysics Optical instruments Neurosciences Cherenkov detectors Large detector systems for particle and astroparticle physics Neutrino detectors Performance of High Energy Physics Detectors Neutrins Telescopis Astrofísica Òptica -- Aparells i instruments Neurociències Article 2020 ftupcatalunyair https://doi.org/10.1088/1748-0221/15/10/P10005 2024-07-25T11:04:31Z The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches Article signat per 245 autors: S. Aielloa, A. Albertbb,b, S. Alves Garrec, Z. Alyd, F. Amelie, M. Andref, G. Androulakisg, M. Anghinolfih, M. Anguitai, G. Antonj, M. Ardidk, J. Aublinl, C. Bagatelasg, G. Barbarinom,n, B. Baretl, S. Basegmez du Preeo, M. Bendahmanp, E. Berbeeo, A.M. van den Bergq, V. Bertind, S. Biagir, A. Biagionie, M. Bissingerj, M. Boettchers, J. Boumaazap, M. Boutat, M. Bouwhuiso, C. Bozzau, H. Brânzaşv, R. Bruijno,w, J. Brunnerd, E. Buisx, R. Buompanem,y, J. Bustod, B. Caiffih, D. Calvoc, A. Caponez,e, V. Carreteroc, P. ... Article in Journal/Newspaper Orca Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge Journal of Instrumentation 15 10 P10005 P10005 |
institution |
Open Polar |
collection |
Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge |
op_collection_id |
ftupcatalunyair |
language |
English |
topic |
Àrees temàtiques de la UPC::Física::Física de partícules Telescopes Astrophysics Optical instruments Neurosciences Cherenkov detectors Large detector systems for particle and astroparticle physics Neutrino detectors Performance of High Energy Physics Detectors Neutrins Telescopis Astrofísica Òptica -- Aparells i instruments Neurociències |
spellingShingle |
Àrees temàtiques de la UPC::Física::Física de partícules Telescopes Astrophysics Optical instruments Neurosciences Cherenkov detectors Large detector systems for particle and astroparticle physics Neutrino detectors Performance of High Energy Physics Detectors Neutrins Telescopis Astrofísica Òptica -- Aparells i instruments Neurociències Aiello, S Albert, A. Alves Garre, Sergio Ameli, F André, Michel Androulakis, Giorgos Anghinolfi, Marco Anguita, M. Anton, Gisela Aublin, J. Bagatelas, Christos Barbarino, G.C. Baret, B. Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
topic_facet |
Àrees temàtiques de la UPC::Física::Física de partícules Telescopes Astrophysics Optical instruments Neurosciences Cherenkov detectors Large detector systems for particle and astroparticle physics Neutrino detectors Performance of High Energy Physics Detectors Neutrins Telescopis Astrofísica Òptica -- Aparells i instruments Neurociències |
description |
The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches Article signat per 245 autors: S. Aielloa, A. Albertbb,b, S. Alves Garrec, Z. Alyd, F. Amelie, M. Andref, G. Androulakisg, M. Anghinolfih, M. Anguitai, G. Antonj, M. Ardidk, J. Aublinl, C. Bagatelasg, G. Barbarinom,n, B. Baretl, S. Basegmez du Preeo, M. Bendahmanp, E. Berbeeo, A.M. van den Bergq, V. Bertind, S. Biagir, A. Biagionie, M. Bissingerj, M. Boettchers, J. Boumaazap, M. Boutat, M. Bouwhuiso, C. Bozzau, H. Brânzaşv, R. Bruijno,w, J. Brunnerd, E. Buisx, R. Buompanem,y, J. Bustod, B. Caiffih, D. Calvoc, A. Caponez,e, V. Carreteroc, P. ... |
author2 |
Centre Tecnològic de Vilanova i la Geltrú Universitat Politècnica de Catalunya. LAB - Laboratori d'Aplicacions Bioacústiques |
format |
Article in Journal/Newspaper |
author |
Aiello, S Albert, A. Alves Garre, Sergio Ameli, F André, Michel Androulakis, Giorgos Anghinolfi, Marco Anguita, M. Anton, Gisela Aublin, J. Bagatelas, Christos Barbarino, G.C. Baret, B. |
author_facet |
Aiello, S Albert, A. Alves Garre, Sergio Ameli, F André, Michel Androulakis, Giorgos Anghinolfi, Marco Anguita, M. Anton, Gisela Aublin, J. Bagatelas, Christos Barbarino, G.C. Baret, B. |
author_sort |
Aiello, S |
title |
Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
title_short |
Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
title_full |
Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
title_fullStr |
Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
title_full_unstemmed |
Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
title_sort |
event reconstruction for km3net/orca using convolutional neural networks |
publishDate |
2020 |
url |
http://hdl.handle.net/2117/340267 https://doi.org/10.1088/1748-0221/15/10/P10005 |
genre |
Orca |
genre_facet |
Orca |
op_relation |
https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005 Aiello, S. [et al.]. Event reconstruction for KM3NeT/ORCA using convolutional neural networks. "Journal of instrumentation", 1 Octubre 2020, vol. 15, núm. P10005, p. 1-40. 1748-0221 http://hdl.handle.net/2117/340267 doi:10.1088/1748-0221/15/10/P10005 |
op_rights |
Attribution-NonCommercial-NoDerivs 3.0 Spain http://creativecommons.org/licenses/by-nc-nd/3.0/es/ Open Access |
op_doi |
https://doi.org/10.1088/1748-0221/15/10/P10005 |
container_title |
Journal of Instrumentation |
container_volume |
15 |
container_issue |
10 |
container_start_page |
P10005 |
op_container_end_page |
P10005 |
_version_ |
1810470242813476864 |