Event reconstruction for KM3NeT/ORCA using convolutional neural networks

The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino...

Full description

Bibliographic Details
Published in:Journal of Instrumentation
Main Authors: Aiello, S, Albert, A., Alves Garre, Sergio, Ameli, F, André, Michel, Androulakis, Giorgos, Anghinolfi, Marco, Anguita, M., Anton, Gisela, Aublin, J., Bagatelas, Christos, Barbarino, G.C., Baret, B.
Other Authors: Centre Tecnològic de Vilanova i la Geltrú, Universitat Politècnica de Catalunya. LAB - Laboratori d'Aplicacions Bioacústiques
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/2117/340267
https://doi.org/10.1088/1748-0221/15/10/P10005
id ftupcatalunyair:oai:upcommons.upc.edu:2117/340267
record_format openpolar
spelling ftupcatalunyair:oai:upcommons.upc.edu:2117/340267 2024-09-15T18:28:48+00:00 Event reconstruction for KM3NeT/ORCA using convolutional neural networks Aiello, S Albert, A. Alves Garre, Sergio Ameli, F André, Michel Androulakis, Giorgos Anghinolfi, Marco Anguita, M. Anton, Gisela Aublin, J. Bagatelas, Christos Barbarino, G.C. Baret, B. Centre Tecnològic de Vilanova i la Geltrú Universitat Politècnica de Catalunya. LAB - Laboratori d'Aplicacions Bioacústiques 2020-10-01 40 p. application/pdf http://hdl.handle.net/2117/340267 https://doi.org/10.1088/1748-0221/15/10/P10005 eng eng https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005 Aiello, S. [et al.]. Event reconstruction for KM3NeT/ORCA using convolutional neural networks. "Journal of instrumentation", 1 Octubre 2020, vol. 15, núm. P10005, p. 1-40. 1748-0221 http://hdl.handle.net/2117/340267 doi:10.1088/1748-0221/15/10/P10005 Attribution-NonCommercial-NoDerivs 3.0 Spain http://creativecommons.org/licenses/by-nc-nd/3.0/es/ Open Access Àrees temàtiques de la UPC::Física::Física de partícules Telescopes Astrophysics Optical instruments Neurosciences Cherenkov detectors Large detector systems for particle and astroparticle physics Neutrino detectors Performance of High Energy Physics Detectors Neutrins Telescopis Astrofísica Òptica -- Aparells i instruments Neurociències Article 2020 ftupcatalunyair https://doi.org/10.1088/1748-0221/15/10/P10005 2024-07-25T11:04:31Z The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches Article signat per 245 autors: S. Aielloa, A. Albertbb,b, S. Alves Garrec, Z. Alyd, F. Amelie, M. Andref, G. Androulakisg, M. Anghinolfih, M. Anguitai, G. Antonj, M. Ardidk, J. Aublinl, C. Bagatelasg, G. Barbarinom,n, B. Baretl, S. Basegmez du Preeo, M. Bendahmanp, E. Berbeeo, A.M. van den Bergq, V. Bertind, S. Biagir, A. Biagionie, M. Bissingerj, M. Boettchers, J. Boumaazap, M. Boutat, M. Bouwhuiso, C. Bozzau, H. Brânzaşv, R. Bruijno,w, J. Brunnerd, E. Buisx, R. Buompanem,y, J. Bustod, B. Caiffih, D. Calvoc, A. Caponez,e, V. Carreteroc, P. ... Article in Journal/Newspaper Orca Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge Journal of Instrumentation 15 10 P10005 P10005
institution Open Polar
collection Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
op_collection_id ftupcatalunyair
language English
topic Àrees temàtiques de la UPC::Física::Física de partícules
Telescopes
Astrophysics
Optical instruments
Neurosciences
Cherenkov detectors
Large detector systems for particle and astroparticle physics
Neutrino detectors
Performance of High Energy Physics Detectors
Neutrins
Telescopis
Astrofísica
Òptica -- Aparells i instruments
Neurociències
spellingShingle Àrees temàtiques de la UPC::Física::Física de partícules
Telescopes
Astrophysics
Optical instruments
Neurosciences
Cherenkov detectors
Large detector systems for particle and astroparticle physics
Neutrino detectors
Performance of High Energy Physics Detectors
Neutrins
Telescopis
Astrofísica
Òptica -- Aparells i instruments
Neurociències
Aiello, S
Albert, A.
Alves Garre, Sergio
Ameli, F
André, Michel
Androulakis, Giorgos
Anghinolfi, Marco
Anguita, M.
Anton, Gisela
Aublin, J.
Bagatelas, Christos
Barbarino, G.C.
Baret, B.
Event reconstruction for KM3NeT/ORCA using convolutional neural networks
topic_facet Àrees temàtiques de la UPC::Física::Física de partícules
Telescopes
Astrophysics
Optical instruments
Neurosciences
Cherenkov detectors
Large detector systems for particle and astroparticle physics
Neutrino detectors
Performance of High Energy Physics Detectors
Neutrins
Telescopis
Astrofísica
Òptica -- Aparells i instruments
Neurociències
description The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches Article signat per 245 autors: S. Aielloa, A. Albertbb,b, S. Alves Garrec, Z. Alyd, F. Amelie, M. Andref, G. Androulakisg, M. Anghinolfih, M. Anguitai, G. Antonj, M. Ardidk, J. Aublinl, C. Bagatelasg, G. Barbarinom,n, B. Baretl, S. Basegmez du Preeo, M. Bendahmanp, E. Berbeeo, A.M. van den Bergq, V. Bertind, S. Biagir, A. Biagionie, M. Bissingerj, M. Boettchers, J. Boumaazap, M. Boutat, M. Bouwhuiso, C. Bozzau, H. Brânzaşv, R. Bruijno,w, J. Brunnerd, E. Buisx, R. Buompanem,y, J. Bustod, B. Caiffih, D. Calvoc, A. Caponez,e, V. Carreteroc, P. ...
author2 Centre Tecnològic de Vilanova i la Geltrú
Universitat Politècnica de Catalunya. LAB - Laboratori d'Aplicacions Bioacústiques
format Article in Journal/Newspaper
author Aiello, S
Albert, A.
Alves Garre, Sergio
Ameli, F
André, Michel
Androulakis, Giorgos
Anghinolfi, Marco
Anguita, M.
Anton, Gisela
Aublin, J.
Bagatelas, Christos
Barbarino, G.C.
Baret, B.
author_facet Aiello, S
Albert, A.
Alves Garre, Sergio
Ameli, F
André, Michel
Androulakis, Giorgos
Anghinolfi, Marco
Anguita, M.
Anton, Gisela
Aublin, J.
Bagatelas, Christos
Barbarino, G.C.
Baret, B.
author_sort Aiello, S
title Event reconstruction for KM3NeT/ORCA using convolutional neural networks
title_short Event reconstruction for KM3NeT/ORCA using convolutional neural networks
title_full Event reconstruction for KM3NeT/ORCA using convolutional neural networks
title_fullStr Event reconstruction for KM3NeT/ORCA using convolutional neural networks
title_full_unstemmed Event reconstruction for KM3NeT/ORCA using convolutional neural networks
title_sort event reconstruction for km3net/orca using convolutional neural networks
publishDate 2020
url http://hdl.handle.net/2117/340267
https://doi.org/10.1088/1748-0221/15/10/P10005
genre Orca
genre_facet Orca
op_relation https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005
Aiello, S. [et al.]. Event reconstruction for KM3NeT/ORCA using convolutional neural networks. "Journal of instrumentation", 1 Octubre 2020, vol. 15, núm. P10005, p. 1-40.
1748-0221
http://hdl.handle.net/2117/340267
doi:10.1088/1748-0221/15/10/P10005
op_rights Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Open Access
op_doi https://doi.org/10.1088/1748-0221/15/10/P10005
container_title Journal of Instrumentation
container_volume 15
container_issue 10
container_start_page P10005
op_container_end_page P10005
_version_ 1810470242813476864