Application of Morison equation in irregular wave trains with high frequency waves

Most numerical models for the analysis of offshore wind platforms are based on one of two different approaches, depending on how waves forces are applied to the structure: 1) the potential flow theory, and 2) the Morison equation. Potential flow theory allows to compute the wave forces more accurate...

Full description

Bibliographic Details
Main Authors: Trubat Casal, Pau, Molins i Borrell, Climent, Hufnagel, Philipp, Alarcón Fernández, Daniel, Campos Hortigüela, Alexis
Other Authors: Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. ATEM - Anàlisi i Tecnologia d'Estructures i Materials
Format: Conference Object
Language:English
Published: American Society of Mechanical Engineers (ASME) 2018
Subjects:
Online Access:http://hdl.handle.net/2117/119217
id ftupcatalunyair:oai:upcommons.upc.edu:2117/119217
record_format openpolar
spelling ftupcatalunyair:oai:upcommons.upc.edu:2117/119217 2024-09-15T17:50:19+00:00 Application of Morison equation in irregular wave trains with high frequency waves Trubat Casal, Pau Molins i Borrell, Climent Hufnagel, Philipp Alarcón Fernández, Daniel Campos Hortigüela, Alexis Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental Universitat Politècnica de Catalunya. ATEM - Anàlisi i Tecnologia d'Estructures i Materials 2018 10 p. application/pdf http://hdl.handle.net/2117/119217 eng eng American Society of Mechanical Engineers (ASME) Trubat, P., Molins, C., Hufnagel, P., Alarcon, D., Campos, A. Application of Morison equation in irregular wave trains with high frequency waves. A: International Conference on Ocean, Offshore and Arctic Engineering. "Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering OMAE2018: June 17-22, 2018, Madrid, Spain". American Society of Mechanical Engineers (ASME), 2018, p. 1-10. http://hdl.handle.net/2117/119217 Restricted access - publisher's policy Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica Àrees temàtiques de la UPC::Energies::Energia eòlica Offshore wind power plants Aerogeneradors -- Models matemàtics Conference report 2018 ftupcatalunyair 2024-07-25T10:56:07Z Most numerical models for the analysis of offshore wind platforms are based on one of two different approaches, depending on how waves forces are applied to the structure: 1) the potential flow theory, and 2) the Morison equation. Potential flow theory allows to compute the wave forces more accurately when diffraction is relevant. Otherwise, this kind of models assume a fixed position of the floating platform when computing the wave forces. Additionally, second-order effects, as the position and the spin of the structure relative to the incident wave can only be taken into account if second order potential flow is considered. On the other hand, Morison equation can apply the wave forces on a structure based on its spin and position which can be assessed at each time step, but is prone to overestimate the waves forces at the frequencies where diffraction is relevant. In this paper, a modification of the implementation of the Morison equation is presented. This modification allows to reduce the forces in the diffraction frequency range based on the real response from MacCamy and Fuchs’s diffraction theory for cylinders. The implementation can be applied using a frequency-dependent coefficient of added mass, or modifying the amplitudes of the incident waves in the diffraction frequency range in a way that the accelerations derived from the regular wave theory used for the Froude-Krylov wave force computation in Morison equation are equivalent to those computed in the diffraction theory. The implementation is tested in the FloawDyn code, developed at the UPC, and FAST from NREL. Postprint (published version) Conference Object Arctic Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
institution Open Polar
collection Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
op_collection_id ftupcatalunyair
language English
topic Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica
Àrees temàtiques de la UPC::Energies::Energia eòlica
Offshore wind power plants
Aerogeneradors -- Models matemàtics
spellingShingle Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica
Àrees temàtiques de la UPC::Energies::Energia eòlica
Offshore wind power plants
Aerogeneradors -- Models matemàtics
Trubat Casal, Pau
Molins i Borrell, Climent
Hufnagel, Philipp
Alarcón Fernández, Daniel
Campos Hortigüela, Alexis
Application of Morison equation in irregular wave trains with high frequency waves
topic_facet Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica
Àrees temàtiques de la UPC::Energies::Energia eòlica
Offshore wind power plants
Aerogeneradors -- Models matemàtics
description Most numerical models for the analysis of offshore wind platforms are based on one of two different approaches, depending on how waves forces are applied to the structure: 1) the potential flow theory, and 2) the Morison equation. Potential flow theory allows to compute the wave forces more accurately when diffraction is relevant. Otherwise, this kind of models assume a fixed position of the floating platform when computing the wave forces. Additionally, second-order effects, as the position and the spin of the structure relative to the incident wave can only be taken into account if second order potential flow is considered. On the other hand, Morison equation can apply the wave forces on a structure based on its spin and position which can be assessed at each time step, but is prone to overestimate the waves forces at the frequencies where diffraction is relevant. In this paper, a modification of the implementation of the Morison equation is presented. This modification allows to reduce the forces in the diffraction frequency range based on the real response from MacCamy and Fuchs’s diffraction theory for cylinders. The implementation can be applied using a frequency-dependent coefficient of added mass, or modifying the amplitudes of the incident waves in the diffraction frequency range in a way that the accelerations derived from the regular wave theory used for the Froude-Krylov wave force computation in Morison equation are equivalent to those computed in the diffraction theory. The implementation is tested in the FloawDyn code, developed at the UPC, and FAST from NREL. Postprint (published version)
author2 Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
Universitat Politècnica de Catalunya. ATEM - Anàlisi i Tecnologia d'Estructures i Materials
format Conference Object
author Trubat Casal, Pau
Molins i Borrell, Climent
Hufnagel, Philipp
Alarcón Fernández, Daniel
Campos Hortigüela, Alexis
author_facet Trubat Casal, Pau
Molins i Borrell, Climent
Hufnagel, Philipp
Alarcón Fernández, Daniel
Campos Hortigüela, Alexis
author_sort Trubat Casal, Pau
title Application of Morison equation in irregular wave trains with high frequency waves
title_short Application of Morison equation in irregular wave trains with high frequency waves
title_full Application of Morison equation in irregular wave trains with high frequency waves
title_fullStr Application of Morison equation in irregular wave trains with high frequency waves
title_full_unstemmed Application of Morison equation in irregular wave trains with high frequency waves
title_sort application of morison equation in irregular wave trains with high frequency waves
publisher American Society of Mechanical Engineers (ASME)
publishDate 2018
url http://hdl.handle.net/2117/119217
genre Arctic
genre_facet Arctic
op_relation Trubat, P., Molins, C., Hufnagel, P., Alarcon, D., Campos, A. Application of Morison equation in irregular wave trains with high frequency waves. A: International Conference on Ocean, Offshore and Arctic Engineering. "Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering OMAE2018: June 17-22, 2018, Madrid, Spain". American Society of Mechanical Engineers (ASME), 2018, p. 1-10.
http://hdl.handle.net/2117/119217
op_rights Restricted access - publisher's policy
_version_ 1810292148758642688