Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements

The application of the POLIPHON (POlarization-LIdar PHOtometer Networking) method is presented for the first time in synergy with continuous 24/7 polarized Micro-Pulse Lidar (P-MPL) measurements to derive the vertical separation of two or three particle components in different aerosol mixtures, and...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: Cordoba Jabonero, Carmen, Sicard, Michaël, Ansmann, Albert, del Aguila, Ana, Baars, Holger
Other Authors: Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/2117/121080
https://doi.org/10.5194/amt-11-4775-2018
id ftupcatalunya:oai:upcommons.upc.edu:2117/121080
record_format openpolar
institution Open Polar
collection Universitat Politècnica de Catalunya (UPC): Theses and Dissertations Online (TDX)
op_collection_id ftupcatalunya
language English
topic Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció
Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Contaminació atmosfèrica
Remote sensing
Atmospheric aerosols
Teledetecció
Aerosols atmosfèrics
spellingShingle Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció
Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Contaminació atmosfèrica
Remote sensing
Atmospheric aerosols
Teledetecció
Aerosols atmosfèrics
Cordoba Jabonero, Carmen
Sicard, Michaël
Ansmann, Albert
del Aguila, Ana
Baars, Holger
Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements
topic_facet Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció
Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Contaminació atmosfèrica
Remote sensing
Atmospheric aerosols
Teledetecció
Aerosols atmosfèrics
description The application of the POLIPHON (POlarization-LIdar PHOtometer Networking) method is presented for the first time in synergy with continuous 24/7 polarized Micro-Pulse Lidar (P-MPL) measurements to derive the vertical separation of two or three particle components in different aerosol mixtures, and the retrieval of their particular optical properties. The procedure of extinction-to-mass conversion, together with an analysis of the mass extinction efficiency (MEE) parameter, is described, and the relative mass contribution of each aerosol component is also derived in a further step. The general POLIPHON algorithm is based on the specific particle linear depolarization ratio given for different types of aerosols and can be run in either 1-step (POL-1) or 2 steps (POL-2) versions with dependence on either the 2- or 3-component separation. In order to illustrate this procedure, aerosol mixing cases observed over Barcelona (NE Spain) are selected: a dust event on 5 July 2016, smoke plumes detected on 23 May 2016 and a pollination episode observed on 23 March 2016. In particular, the 3-component separation is just applied for the dust case: a combined POL-1 with POL-2 procedure (POL-1/2) is used, and additionally the fine-dust contribution to the total fine mode (fine dust plus non-dust aerosols) is estimated. The high dust impact before 12:00UTC yields a mean mass loading of 0.6±0.1gm-2 due to the prevalence of Saharan coarse-dust particles. After that time, the mean mass loading is reduced by two-thirds, showing a rather weak dust incidence. In the smoke case, the arrival of fine biomass-burning particles is detected at altitudes as high as 7km. The smoke particles, probably mixed with less depolarizing non-smoke aerosols, are observed in air masses, having their origin from either North American fires or the Arctic area, as reported by HYSPLIT back-trajectory analysis. The particle linear depolarization ratio for smoke shows values in the 0.10–0.15 range and even higher at given times, and the daily mean smoke mass loading is 0.017±0.008gm-2, around 3% of that found for the dust event. Pollen particles are detected up to 1.5km in height from 10:00UTC during an intense pollination event with a particle linear depolarization ratio ranging between 0.10 and 0.15. The maximal mass loading of Platanus pollen particles is 0.011±0.003gm-2, representing around 2% of the dust loading during the higher dust incidence. Regarding the MEE derived for each aerosol component, their values are in agreement with others referenced in the literature for the specific aerosol types examined in this work: 0.5±0.1 and 1.7±0.2m2g-1 are found for coarse and fine dust particles, 4.5±1.4m2g-1 is derived for smoke and 2.4±0.5m2g-1 for non-smoke aerosols with Arctic origin, and a MEE of 2.4±0.8m2g-1 is obtained for pollen particles, though it can reach higher or lower values depending on predominantly smaller or larger pollen grain sizes. Results reveal the high potential of the P-MPL system, a simple polarization-sensitive elastic backscatter lidar working in a 24/7 operation mode, to retrieve the relative optical and mass contributions of each aerosol component throughout the day, reflecting the daily variability of their properties. In fact, this procedure can be simply implemented in other P-MPLs that also operate within the worldwide Micro-Pulse Lidar Network (MPLNET), thus extending the aerosol discrimination at a global scale. Moreover, the method has the advantage of also being relatively easily applicable to space-borne lidars with an equivalent configuration such as the ongoing Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) on board NASA CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) and the forthcoming Atmospheric Lidar (ATLID) on board the ESA EarthCARE mission. Peer Reviewed Postprint (published version)
author2 Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
format Article in Journal/Newspaper
author Cordoba Jabonero, Carmen
Sicard, Michaël
Ansmann, Albert
del Aguila, Ana
Baars, Holger
author_facet Cordoba Jabonero, Carmen
Sicard, Michaël
Ansmann, Albert
del Aguila, Ana
Baars, Holger
author_sort Cordoba Jabonero, Carmen
title Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements
title_short Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements
title_full Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements
title_fullStr Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements
title_full_unstemmed Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements
title_sort separation of the optical and mass features of particle components in different aerosol mixtures by using poliphon retrievals in synergy with continuous polarized micro-pulse lidar (p-mpl) measurements
publishDate 2018
url http://hdl.handle.net/2117/121080
https://doi.org/10.5194/amt-11-4775-2018
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation https://www.atmos-meas-tech.net/11/4775/2018/
info:eu-repo/grantAgreement/MINECO/1PE/MDM-2016-0600
info:eu-repo/grantAgreement/EC/H2020/654109/EU/Aerosols, Clouds, and Trace gases Research InfraStructure/ACTRIS-2
info:eu-repo/grantAgreement/AGAUR/PRI2010-2013/2014 SGR 583
info:eu-repo/grantAgreement/MINECO/1PE/TEC2015-63832-P
op_rights Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Open Access
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.5194/amt-11-4775-2018
container_title Atmospheric Measurement Techniques
container_volume 11
container_issue 8
container_start_page 4775
op_container_end_page 4795
_version_ 1766347302591528960
spelling ftupcatalunya:oai:upcommons.upc.edu:2117/121080 2023-05-15T15:17:01+02:00 Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements Cordoba Jabonero, Carmen Sicard, Michaël Ansmann, Albert del Aguila, Ana Baars, Holger Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció 2018-08-15 21 p. http://hdl.handle.net/2117/121080 https://doi.org/10.5194/amt-11-4775-2018 eng eng https://www.atmos-meas-tech.net/11/4775/2018/ info:eu-repo/grantAgreement/MINECO/1PE/MDM-2016-0600 info:eu-repo/grantAgreement/EC/H2020/654109/EU/Aerosols, Clouds, and Trace gases Research InfraStructure/ACTRIS-2 info:eu-repo/grantAgreement/AGAUR/PRI2010-2013/2014 SGR 583 info:eu-repo/grantAgreement/MINECO/1PE/TEC2015-63832-P Attribution-NonCommercial-NoDerivs 3.0 Spain http://creativecommons.org/licenses/by-nc-nd/3.0/es/ Open Access CC-BY-NC-ND Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Contaminació atmosfèrica Remote sensing Atmospheric aerosols Teledetecció Aerosols atmosfèrics Article 2018 ftupcatalunya https://doi.org/10.5194/amt-11-4775-2018 2019-09-29T09:22:17Z The application of the POLIPHON (POlarization-LIdar PHOtometer Networking) method is presented for the first time in synergy with continuous 24/7 polarized Micro-Pulse Lidar (P-MPL) measurements to derive the vertical separation of two or three particle components in different aerosol mixtures, and the retrieval of their particular optical properties. The procedure of extinction-to-mass conversion, together with an analysis of the mass extinction efficiency (MEE) parameter, is described, and the relative mass contribution of each aerosol component is also derived in a further step. The general POLIPHON algorithm is based on the specific particle linear depolarization ratio given for different types of aerosols and can be run in either 1-step (POL-1) or 2 steps (POL-2) versions with dependence on either the 2- or 3-component separation. In order to illustrate this procedure, aerosol mixing cases observed over Barcelona (NE Spain) are selected: a dust event on 5 July 2016, smoke plumes detected on 23 May 2016 and a pollination episode observed on 23 March 2016. In particular, the 3-component separation is just applied for the dust case: a combined POL-1 with POL-2 procedure (POL-1/2) is used, and additionally the fine-dust contribution to the total fine mode (fine dust plus non-dust aerosols) is estimated. The high dust impact before 12:00UTC yields a mean mass loading of 0.6±0.1gm-2 due to the prevalence of Saharan coarse-dust particles. After that time, the mean mass loading is reduced by two-thirds, showing a rather weak dust incidence. In the smoke case, the arrival of fine biomass-burning particles is detected at altitudes as high as 7km. The smoke particles, probably mixed with less depolarizing non-smoke aerosols, are observed in air masses, having their origin from either North American fires or the Arctic area, as reported by HYSPLIT back-trajectory analysis. The particle linear depolarization ratio for smoke shows values in the 0.10–0.15 range and even higher at given times, and the daily mean smoke mass loading is 0.017±0.008gm-2, around 3% of that found for the dust event. Pollen particles are detected up to 1.5km in height from 10:00UTC during an intense pollination event with a particle linear depolarization ratio ranging between 0.10 and 0.15. The maximal mass loading of Platanus pollen particles is 0.011±0.003gm-2, representing around 2% of the dust loading during the higher dust incidence. Regarding the MEE derived for each aerosol component, their values are in agreement with others referenced in the literature for the specific aerosol types examined in this work: 0.5±0.1 and 1.7±0.2m2g-1 are found for coarse and fine dust particles, 4.5±1.4m2g-1 is derived for smoke and 2.4±0.5m2g-1 for non-smoke aerosols with Arctic origin, and a MEE of 2.4±0.8m2g-1 is obtained for pollen particles, though it can reach higher or lower values depending on predominantly smaller or larger pollen grain sizes. Results reveal the high potential of the P-MPL system, a simple polarization-sensitive elastic backscatter lidar working in a 24/7 operation mode, to retrieve the relative optical and mass contributions of each aerosol component throughout the day, reflecting the daily variability of their properties. In fact, this procedure can be simply implemented in other P-MPLs that also operate within the worldwide Micro-Pulse Lidar Network (MPLNET), thus extending the aerosol discrimination at a global scale. Moreover, the method has the advantage of also being relatively easily applicable to space-borne lidars with an equivalent configuration such as the ongoing Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) on board NASA CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) and the forthcoming Atmospheric Lidar (ATLID) on board the ESA EarthCARE mission. Peer Reviewed Postprint (published version) Article in Journal/Newspaper Arctic Universitat Politècnica de Catalunya (UPC): Theses and Dissertations Online (TDX) Arctic Atmospheric Measurement Techniques 11 8 4775 4795