Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi

Halohasta litchfieldiae represents ∼ 44% and Halorubrum lacusprofundi ∼ 10% of the hypersaline, perennially cold (≥ −20°C) Deep Lake community in Antarctica. We used proteomics and microscopy to define physiological responses of these haloarchaea to growth at high (30°C) and low (10 and 4°C) tempera...

Full description

Bibliographic Details
Published in:Environmental Microbiology
Main Authors: Williams, TJ, Liao, Y, Ye, J, Kuchel, RP, Poljak, A, Raftery, MJ, Cavicchioli, R
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley 2017
Subjects:
Online Access:http://hdl.handle.net/1959.4/unsworks_49899
https://unsworks.unsw.edu.au/bitstreams/ff82bb76-4e61-4232-96ab-5d196ebe546c/download
https://doi.org/10.1111/1462-2920.13705
_version_ 1831837385802907648
author Williams, TJ
Liao, Y
Ye, J
Kuchel, RP
Poljak, A
Raftery, MJ
Cavicchioli, R
author_facet Williams, TJ
Liao, Y
Ye, J
Kuchel, RP
Poljak, A
Raftery, MJ
Cavicchioli, R
author_sort Williams, TJ
collection UNSW Sydney (The University of New South Wales): UNSWorks
container_issue 6
container_start_page 2210
container_title Environmental Microbiology
container_volume 19
description Halohasta litchfieldiae represents ∼ 44% and Halorubrum lacusprofundi ∼ 10% of the hypersaline, perennially cold (≥ −20°C) Deep Lake community in Antarctica. We used proteomics and microscopy to define physiological responses of these haloarchaea to growth at high (30°C) and low (10 and 4°C) temperatures. The proteomic data indicate that both species responded to low temperature by modifying their cell envelope including protein N-glycosylation, maintaining osmotic balance and translation initiation, and modifying RNA turnover and tRNA modification. Distinctions between the two species included DNA protection and repair strategies (e.g. roles of UspA and Rad50), and metabolism of glycerol and pyruvate. For Hrr. lacusprofundi, low temperature led to the formation of polyhydroxyalkanoate-like granules, with granule formation occurring by an unknown mechanism. Hrr. lacusprofundi also formed biofilms and synthesized high levels of Hsp20 chaperones. Hht. litchfieldiae was characterized by an active CRISPR system, and elevated levels of the core gene expression machinery, which contrasted markedly to the decreased levels of Hrr. lacusprofundi. These findings greatly expand the understanding of cellular mechanisms of cold adaptation in psychrophilic archaea, and provide insight into how Hht. litchfieldiae gains dominance in Deep Lake.
format Article in Journal/Newspaper
genre Antarc*
Antarctic
Antarctica
genre_facet Antarc*
Antarctic
Antarctica
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
id ftunswworks:oai:unsworks.library.unsw.edu.au:1959.4/unsworks_49899
institution Open Polar
language unknown
op_collection_id ftunswworks
op_container_end_page 2227
op_doi https://doi.org/10.1111/1462-2920.13705
op_relation http://purl.org/au-research/grants/arc/DP150100244
http://hdl.handle.net/1959.4/unsworks_49899
op_rights open access
https://purl.org/coar/access_right/c_abf2
CC-BY-NC-ND
https://creativecommons.org/licenses/by-nc-nd/4.0/
free_to_read
op_source urn:ISSN:1462-2912
urn:ISSN:1462-2920
Environmental Microbiology, 19, 6, 2210-2227
publishDate 2017
publisher Wiley
record_format openpolar
spelling ftunswworks:oai:unsworks.library.unsw.edu.au:1959.4/unsworks_49899 2025-05-11T14:12:00+00:00 Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi Williams, TJ Liao, Y Ye, J Kuchel, RP Poljak, A Raftery, MJ Cavicchioli, R 2017-06-01 application/pdf http://hdl.handle.net/1959.4/unsworks_49899 https://unsworks.unsw.edu.au/bitstreams/ff82bb76-4e61-4232-96ab-5d196ebe546c/download https://doi.org/10.1111/1462-2920.13705 unknown Wiley http://purl.org/au-research/grants/arc/DP150100244 http://hdl.handle.net/1959.4/unsworks_49899 open access https://purl.org/coar/access_right/c_abf2 CC-BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/ free_to_read urn:ISSN:1462-2912 urn:ISSN:1462-2920 Environmental Microbiology, 19, 6, 2210-2227 31 Biological Sciences 3105 Genetics Genetics Adaptation Physiological Antarctic Regions Biofilms Cell Membrane Cold Temperature DNA Repair Glycosylation HSP20 Heat-Shock Proteins Halorubrum Lakes Membrane Proteins Polyhydroxyalkanoates Proteomics RNA anzsrc-for: 31 Biological Sciences anzsrc-for: 3105 Genetics anzsrc-for: 0603 Evolutionary Biology anzsrc-for: 0605 Microbiology anzsrc-for: 3103 Ecology anzsrc-for: 3107 Microbiology journal article http://purl.org/coar/resource_type/c_6501 2017 ftunswworks https://doi.org/10.1111/1462-2920.13705 2025-04-15T14:18:17Z Halohasta litchfieldiae represents ∼ 44% and Halorubrum lacusprofundi ∼ 10% of the hypersaline, perennially cold (≥ −20°C) Deep Lake community in Antarctica. We used proteomics and microscopy to define physiological responses of these haloarchaea to growth at high (30°C) and low (10 and 4°C) temperatures. The proteomic data indicate that both species responded to low temperature by modifying their cell envelope including protein N-glycosylation, maintaining osmotic balance and translation initiation, and modifying RNA turnover and tRNA modification. Distinctions between the two species included DNA protection and repair strategies (e.g. roles of UspA and Rad50), and metabolism of glycerol and pyruvate. For Hrr. lacusprofundi, low temperature led to the formation of polyhydroxyalkanoate-like granules, with granule formation occurring by an unknown mechanism. Hrr. lacusprofundi also formed biofilms and synthesized high levels of Hsp20 chaperones. Hht. litchfieldiae was characterized by an active CRISPR system, and elevated levels of the core gene expression machinery, which contrasted markedly to the decreased levels of Hrr. lacusprofundi. These findings greatly expand the understanding of cellular mechanisms of cold adaptation in psychrophilic archaea, and provide insight into how Hht. litchfieldiae gains dominance in Deep Lake. Article in Journal/Newspaper Antarc* Antarctic Antarctica UNSW Sydney (The University of New South Wales): UNSWorks Antarctic The Antarctic Environmental Microbiology 19 6 2210 2227
spellingShingle 31 Biological Sciences
3105 Genetics
Genetics
Adaptation
Physiological
Antarctic Regions
Biofilms
Cell Membrane
Cold Temperature
DNA Repair
Glycosylation
HSP20 Heat-Shock Proteins
Halorubrum
Lakes
Membrane Proteins
Polyhydroxyalkanoates
Proteomics
RNA
anzsrc-for: 31 Biological Sciences
anzsrc-for: 3105 Genetics
anzsrc-for: 0603 Evolutionary Biology
anzsrc-for: 0605 Microbiology
anzsrc-for: 3103 Ecology
anzsrc-for: 3107 Microbiology
Williams, TJ
Liao, Y
Ye, J
Kuchel, RP
Poljak, A
Raftery, MJ
Cavicchioli, R
Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi
title Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi
title_full Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi
title_fullStr Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi
title_full_unstemmed Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi
title_short Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi
title_sort cold adaptation of the antarctic haloarchaea halohasta litchfieldiae and halorubrum lacusprofundi
topic 31 Biological Sciences
3105 Genetics
Genetics
Adaptation
Physiological
Antarctic Regions
Biofilms
Cell Membrane
Cold Temperature
DNA Repair
Glycosylation
HSP20 Heat-Shock Proteins
Halorubrum
Lakes
Membrane Proteins
Polyhydroxyalkanoates
Proteomics
RNA
anzsrc-for: 31 Biological Sciences
anzsrc-for: 3105 Genetics
anzsrc-for: 0603 Evolutionary Biology
anzsrc-for: 0605 Microbiology
anzsrc-for: 3103 Ecology
anzsrc-for: 3107 Microbiology
topic_facet 31 Biological Sciences
3105 Genetics
Genetics
Adaptation
Physiological
Antarctic Regions
Biofilms
Cell Membrane
Cold Temperature
DNA Repair
Glycosylation
HSP20 Heat-Shock Proteins
Halorubrum
Lakes
Membrane Proteins
Polyhydroxyalkanoates
Proteomics
RNA
anzsrc-for: 31 Biological Sciences
anzsrc-for: 3105 Genetics
anzsrc-for: 0603 Evolutionary Biology
anzsrc-for: 0605 Microbiology
anzsrc-for: 3103 Ecology
anzsrc-for: 3107 Microbiology
url http://hdl.handle.net/1959.4/unsworks_49899
https://unsworks.unsw.edu.au/bitstreams/ff82bb76-4e61-4232-96ab-5d196ebe546c/download
https://doi.org/10.1111/1462-2920.13705