Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi
Halohasta litchfieldiae represents ∼ 44% and Halorubrum lacusprofundi ∼ 10% of the hypersaline, perennially cold (≥ −20°C) Deep Lake community in Antarctica. We used proteomics and microscopy to define physiological responses of these haloarchaea to growth at high (30°C) and low (10 and 4°C) tempera...
Published in: | Environmental Microbiology |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Wiley
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/1959.4/unsworks_49899 https://unsworks.unsw.edu.au/bitstreams/ff82bb76-4e61-4232-96ab-5d196ebe546c/download https://doi.org/10.1111/1462-2920.13705 |
_version_ | 1831837385802907648 |
---|---|
author | Williams, TJ Liao, Y Ye, J Kuchel, RP Poljak, A Raftery, MJ Cavicchioli, R |
author_facet | Williams, TJ Liao, Y Ye, J Kuchel, RP Poljak, A Raftery, MJ Cavicchioli, R |
author_sort | Williams, TJ |
collection | UNSW Sydney (The University of New South Wales): UNSWorks |
container_issue | 6 |
container_start_page | 2210 |
container_title | Environmental Microbiology |
container_volume | 19 |
description | Halohasta litchfieldiae represents ∼ 44% and Halorubrum lacusprofundi ∼ 10% of the hypersaline, perennially cold (≥ −20°C) Deep Lake community in Antarctica. We used proteomics and microscopy to define physiological responses of these haloarchaea to growth at high (30°C) and low (10 and 4°C) temperatures. The proteomic data indicate that both species responded to low temperature by modifying their cell envelope including protein N-glycosylation, maintaining osmotic balance and translation initiation, and modifying RNA turnover and tRNA modification. Distinctions between the two species included DNA protection and repair strategies (e.g. roles of UspA and Rad50), and metabolism of glycerol and pyruvate. For Hrr. lacusprofundi, low temperature led to the formation of polyhydroxyalkanoate-like granules, with granule formation occurring by an unknown mechanism. Hrr. lacusprofundi also formed biofilms and synthesized high levels of Hsp20 chaperones. Hht. litchfieldiae was characterized by an active CRISPR system, and elevated levels of the core gene expression machinery, which contrasted markedly to the decreased levels of Hrr. lacusprofundi. These findings greatly expand the understanding of cellular mechanisms of cold adaptation in psychrophilic archaea, and provide insight into how Hht. litchfieldiae gains dominance in Deep Lake. |
format | Article in Journal/Newspaper |
genre | Antarc* Antarctic Antarctica |
genre_facet | Antarc* Antarctic Antarctica |
geographic | Antarctic The Antarctic |
geographic_facet | Antarctic The Antarctic |
id | ftunswworks:oai:unsworks.library.unsw.edu.au:1959.4/unsworks_49899 |
institution | Open Polar |
language | unknown |
op_collection_id | ftunswworks |
op_container_end_page | 2227 |
op_doi | https://doi.org/10.1111/1462-2920.13705 |
op_relation | http://purl.org/au-research/grants/arc/DP150100244 http://hdl.handle.net/1959.4/unsworks_49899 |
op_rights | open access https://purl.org/coar/access_right/c_abf2 CC-BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/ free_to_read |
op_source | urn:ISSN:1462-2912 urn:ISSN:1462-2920 Environmental Microbiology, 19, 6, 2210-2227 |
publishDate | 2017 |
publisher | Wiley |
record_format | openpolar |
spelling | ftunswworks:oai:unsworks.library.unsw.edu.au:1959.4/unsworks_49899 2025-05-11T14:12:00+00:00 Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi Williams, TJ Liao, Y Ye, J Kuchel, RP Poljak, A Raftery, MJ Cavicchioli, R 2017-06-01 application/pdf http://hdl.handle.net/1959.4/unsworks_49899 https://unsworks.unsw.edu.au/bitstreams/ff82bb76-4e61-4232-96ab-5d196ebe546c/download https://doi.org/10.1111/1462-2920.13705 unknown Wiley http://purl.org/au-research/grants/arc/DP150100244 http://hdl.handle.net/1959.4/unsworks_49899 open access https://purl.org/coar/access_right/c_abf2 CC-BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/ free_to_read urn:ISSN:1462-2912 urn:ISSN:1462-2920 Environmental Microbiology, 19, 6, 2210-2227 31 Biological Sciences 3105 Genetics Genetics Adaptation Physiological Antarctic Regions Biofilms Cell Membrane Cold Temperature DNA Repair Glycosylation HSP20 Heat-Shock Proteins Halorubrum Lakes Membrane Proteins Polyhydroxyalkanoates Proteomics RNA anzsrc-for: 31 Biological Sciences anzsrc-for: 3105 Genetics anzsrc-for: 0603 Evolutionary Biology anzsrc-for: 0605 Microbiology anzsrc-for: 3103 Ecology anzsrc-for: 3107 Microbiology journal article http://purl.org/coar/resource_type/c_6501 2017 ftunswworks https://doi.org/10.1111/1462-2920.13705 2025-04-15T14:18:17Z Halohasta litchfieldiae represents ∼ 44% and Halorubrum lacusprofundi ∼ 10% of the hypersaline, perennially cold (≥ −20°C) Deep Lake community in Antarctica. We used proteomics and microscopy to define physiological responses of these haloarchaea to growth at high (30°C) and low (10 and 4°C) temperatures. The proteomic data indicate that both species responded to low temperature by modifying their cell envelope including protein N-glycosylation, maintaining osmotic balance and translation initiation, and modifying RNA turnover and tRNA modification. Distinctions between the two species included DNA protection and repair strategies (e.g. roles of UspA and Rad50), and metabolism of glycerol and pyruvate. For Hrr. lacusprofundi, low temperature led to the formation of polyhydroxyalkanoate-like granules, with granule formation occurring by an unknown mechanism. Hrr. lacusprofundi also formed biofilms and synthesized high levels of Hsp20 chaperones. Hht. litchfieldiae was characterized by an active CRISPR system, and elevated levels of the core gene expression machinery, which contrasted markedly to the decreased levels of Hrr. lacusprofundi. These findings greatly expand the understanding of cellular mechanisms of cold adaptation in psychrophilic archaea, and provide insight into how Hht. litchfieldiae gains dominance in Deep Lake. Article in Journal/Newspaper Antarc* Antarctic Antarctica UNSW Sydney (The University of New South Wales): UNSWorks Antarctic The Antarctic Environmental Microbiology 19 6 2210 2227 |
spellingShingle | 31 Biological Sciences 3105 Genetics Genetics Adaptation Physiological Antarctic Regions Biofilms Cell Membrane Cold Temperature DNA Repair Glycosylation HSP20 Heat-Shock Proteins Halorubrum Lakes Membrane Proteins Polyhydroxyalkanoates Proteomics RNA anzsrc-for: 31 Biological Sciences anzsrc-for: 3105 Genetics anzsrc-for: 0603 Evolutionary Biology anzsrc-for: 0605 Microbiology anzsrc-for: 3103 Ecology anzsrc-for: 3107 Microbiology Williams, TJ Liao, Y Ye, J Kuchel, RP Poljak, A Raftery, MJ Cavicchioli, R Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi |
title | Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi |
title_full | Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi |
title_fullStr | Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi |
title_full_unstemmed | Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi |
title_short | Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi |
title_sort | cold adaptation of the antarctic haloarchaea halohasta litchfieldiae and halorubrum lacusprofundi |
topic | 31 Biological Sciences 3105 Genetics Genetics Adaptation Physiological Antarctic Regions Biofilms Cell Membrane Cold Temperature DNA Repair Glycosylation HSP20 Heat-Shock Proteins Halorubrum Lakes Membrane Proteins Polyhydroxyalkanoates Proteomics RNA anzsrc-for: 31 Biological Sciences anzsrc-for: 3105 Genetics anzsrc-for: 0603 Evolutionary Biology anzsrc-for: 0605 Microbiology anzsrc-for: 3103 Ecology anzsrc-for: 3107 Microbiology |
topic_facet | 31 Biological Sciences 3105 Genetics Genetics Adaptation Physiological Antarctic Regions Biofilms Cell Membrane Cold Temperature DNA Repair Glycosylation HSP20 Heat-Shock Proteins Halorubrum Lakes Membrane Proteins Polyhydroxyalkanoates Proteomics RNA anzsrc-for: 31 Biological Sciences anzsrc-for: 3105 Genetics anzsrc-for: 0603 Evolutionary Biology anzsrc-for: 0605 Microbiology anzsrc-for: 3103 Ecology anzsrc-for: 3107 Microbiology |
url | http://hdl.handle.net/1959.4/unsworks_49899 https://unsworks.unsw.edu.au/bitstreams/ff82bb76-4e61-4232-96ab-5d196ebe546c/download https://doi.org/10.1111/1462-2920.13705 |