A novel empirical approach to diagnose patterns of air-sea carbon dioxide fluxes and ocean acidification

Understanding the oceans role in mitigating atmospheric CO2 and climate requires a good constraint on spatiotemporal variability in the ocean carbon system. However, large spatiotemporal data limitations hamper our ability to quantify and understand patterns of ocean carbon dynamics. Here, I have de...

Full description

Bibliographic Details
Main Author: Sasse, Tristan
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: UNSW, Sydney 2013
Subjects:
Online Access:http://hdl.handle.net/1959.4/52867
https://unsworks.unsw.edu.au/bitstreams/18c8314b-aca2-48b8-85f9-440561882d30/download
https://doi.org/10.26190/unsworks/2482
id ftunswworks:oai:unsworks.library.unsw.edu.au:1959.4/52867
record_format openpolar
spelling ftunswworks:oai:unsworks.library.unsw.edu.au:1959.4/52867 2024-11-03T14:58:35+00:00 A novel empirical approach to diagnose patterns of air-sea carbon dioxide fluxes and ocean acidification Sasse, Tristan 2013 application/pdf http://hdl.handle.net/1959.4/52867 https://unsworks.unsw.edu.au/bitstreams/18c8314b-aca2-48b8-85f9-440561882d30/download https://doi.org/10.26190/unsworks/2482 EN eng UNSW, Sydney http://hdl.handle.net/1959.4/52867 https://doi.org/10.26190/unsworks/2482 open access https://purl.org/coar/access_right/c_abf2 CC BY-NC-ND 3.0 https://creativecommons.org/licenses/by-nc-nd/3.0/au/ free_to_read Ocean acidification Ocean carbon dynamics Air-sea CO2 flux Empirical ocean carbon model doctoral thesis http://purl.org/coar/resource_type/c_db06 2013 ftunswworks https://doi.org/10.26190/unsworks/2482 2024-10-22T16:16:57Z Understanding the oceans role in mitigating atmospheric CO2 and climate requires a good constraint on spatiotemporal variability in the ocean carbon system. However, large spatiotemporal data limitations hamper our ability to quantify and understand patterns of ocean carbon dynamics. Here, I have developed a novel empirical approach to predict inorganic CO2 concentrations (total inorganic carbon (CT), total alkalinity (AT) and partial pressure of CO2 (pCO2)) in the global ocean mixed-layer using standard hydrographic parameters (SHP; temperature, salinity, dissolved oxygen and nutrients) in order to provide independent constraints and insights on our understanding of ocean carbon dynamics, air-sea gas exchange and ocean acidification. The novel technique, called SOMLO (Self-Organizing Multiple-Linear Output), couples a neural-network clustering algorithm with a multiple-linear regression to derive empirical relationships using bottle-data. Deploying and testing the SOMLO approach on a newly synthesized global bottle-dataset showed significant improvements over traditional linear approaches; improving global predictive skill by 19% for CT, with a global capacity to predict CT to within ±10.9 μmol kg-1 (±9.2 μmol kg-1 for AT and ±22.5 μatm for pCO2). In particular, the new non-linear method improved predictive skill in the most complex and dynamically important regions of the ocean (equatorial Pacific and Southern Ocean) by up to 30%. The SOMLO approach was then applied to monthly SHP climatologies (WOA09) in order to diagnose monthly ocean surface CT, AT and pCO2 patterns for the nominal year of 2000. Based on this analysis, patterns of air-sea CO2 flux were diagnosed and found to be broadly consistent with the global underway pCO2 database, suggesting a contemporary oceanic CO2 uptake of 1.10±0.25 PgC yr-1 for the year of 2000. However, significant differences were found in 30% of the ocean, particularly in the equatorial Pacific and Southern Oceans. For ocean acidification, seasonality in CO2 was found to bring ... Doctoral or Postdoctoral Thesis Ocean acidification Southern Ocean UNSW Sydney (The University of New South Wales): UNSWorks Southern Ocean Pacific
institution Open Polar
collection UNSW Sydney (The University of New South Wales): UNSWorks
op_collection_id ftunswworks
language English
topic Ocean acidification
Ocean carbon dynamics
Air-sea CO2 flux
Empirical ocean carbon model
spellingShingle Ocean acidification
Ocean carbon dynamics
Air-sea CO2 flux
Empirical ocean carbon model
Sasse, Tristan
A novel empirical approach to diagnose patterns of air-sea carbon dioxide fluxes and ocean acidification
topic_facet Ocean acidification
Ocean carbon dynamics
Air-sea CO2 flux
Empirical ocean carbon model
description Understanding the oceans role in mitigating atmospheric CO2 and climate requires a good constraint on spatiotemporal variability in the ocean carbon system. However, large spatiotemporal data limitations hamper our ability to quantify and understand patterns of ocean carbon dynamics. Here, I have developed a novel empirical approach to predict inorganic CO2 concentrations (total inorganic carbon (CT), total alkalinity (AT) and partial pressure of CO2 (pCO2)) in the global ocean mixed-layer using standard hydrographic parameters (SHP; temperature, salinity, dissolved oxygen and nutrients) in order to provide independent constraints and insights on our understanding of ocean carbon dynamics, air-sea gas exchange and ocean acidification. The novel technique, called SOMLO (Self-Organizing Multiple-Linear Output), couples a neural-network clustering algorithm with a multiple-linear regression to derive empirical relationships using bottle-data. Deploying and testing the SOMLO approach on a newly synthesized global bottle-dataset showed significant improvements over traditional linear approaches; improving global predictive skill by 19% for CT, with a global capacity to predict CT to within ±10.9 μmol kg-1 (±9.2 μmol kg-1 for AT and ±22.5 μatm for pCO2). In particular, the new non-linear method improved predictive skill in the most complex and dynamically important regions of the ocean (equatorial Pacific and Southern Ocean) by up to 30%. The SOMLO approach was then applied to monthly SHP climatologies (WOA09) in order to diagnose monthly ocean surface CT, AT and pCO2 patterns for the nominal year of 2000. Based on this analysis, patterns of air-sea CO2 flux were diagnosed and found to be broadly consistent with the global underway pCO2 database, suggesting a contemporary oceanic CO2 uptake of 1.10±0.25 PgC yr-1 for the year of 2000. However, significant differences were found in 30% of the ocean, particularly in the equatorial Pacific and Southern Oceans. For ocean acidification, seasonality in CO2 was found to bring ...
format Doctoral or Postdoctoral Thesis
author Sasse, Tristan
author_facet Sasse, Tristan
author_sort Sasse, Tristan
title A novel empirical approach to diagnose patterns of air-sea carbon dioxide fluxes and ocean acidification
title_short A novel empirical approach to diagnose patterns of air-sea carbon dioxide fluxes and ocean acidification
title_full A novel empirical approach to diagnose patterns of air-sea carbon dioxide fluxes and ocean acidification
title_fullStr A novel empirical approach to diagnose patterns of air-sea carbon dioxide fluxes and ocean acidification
title_full_unstemmed A novel empirical approach to diagnose patterns of air-sea carbon dioxide fluxes and ocean acidification
title_sort novel empirical approach to diagnose patterns of air-sea carbon dioxide fluxes and ocean acidification
publisher UNSW, Sydney
publishDate 2013
url http://hdl.handle.net/1959.4/52867
https://unsworks.unsw.edu.au/bitstreams/18c8314b-aca2-48b8-85f9-440561882d30/download
https://doi.org/10.26190/unsworks/2482
geographic Southern Ocean
Pacific
geographic_facet Southern Ocean
Pacific
genre Ocean acidification
Southern Ocean
genre_facet Ocean acidification
Southern Ocean
op_relation http://hdl.handle.net/1959.4/52867
https://doi.org/10.26190/unsworks/2482
op_rights open access
https://purl.org/coar/access_right/c_abf2
CC BY-NC-ND 3.0
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
free_to_read
op_doi https://doi.org/10.26190/unsworks/2482
_version_ 1814717426573508608