Heat stored in the Earth system:where does the energy go?

Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of...

Full description

Bibliographic Details
Published in:Earth System Science Data
Main Authors: von Schuckmann, Karina, Cheng, Lijing, Palmer, Matthew D., Hansen, James, Tassone, Caterina, Aich, Valentin, Adusumilli, Susheel, Beltrami, Hugo, Boyer, Tim, Cuesta-Valero, Francisco Jose, Desbruyeres, Damien, Domingues, Catia, Garcia-Garcia, Almudena, Gentine, Pierre, Gilson, John, Gorfer, Maximilian, Haimberger, Leopold, Ishii, Masayoshi, Johnson, Gregory C., Killick, Rachel, King, Brian A., Kirchengast, Gottfried, Kolodziejczyk, Nicolas, Lyman, John, Marzeion, Ben, Mayer, Michael, Monier, Maeva, Monselesan, Didier Paolo, Purkey, Sarah, Roemmich, Dean, Schweiger, Axel, Seneviratne, Sonia, Shepherd, Andrew, Slater, Donald A., Steiner, Andrea K., Straneo, Fiammetta, Timmermans, Mary-Louise, Wijffels, Susan E.
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://risweb.st-andrews.ac.uk/portal/en/researchoutput/heat-stored-in-the-earth-system(a09e38ce-2230-44fe-a714-aac9baea9065).html
https://doi.org/10.5194/essd-12-2013-2020
https://research-repository.st-andrews.ac.uk/bitstream/10023/21568/1/von_Schuckmann_2020_ESED_heat_stored_CC.pdf
id ftunstandrewcris:oai:risweb.st-andrews.ac.uk:publications/a09e38ce-2230-44fe-a714-aac9baea9065
record_format openpolar
institution Open Polar
collection University of St Andrews: Research Portal
op_collection_id ftunstandrewcris
language English
topic Sea-level rise
Surface temperature
GPS radio occultation
Global ocean
Climate-change
Mass-balance
Artic amplification
Southern ocean
North Atlantic
Ice discharge
spellingShingle Sea-level rise
Surface temperature
GPS radio occultation
Global ocean
Climate-change
Mass-balance
Artic amplification
Southern ocean
North Atlantic
Ice discharge
von Schuckmann, Karina
Cheng, Lijing
Palmer, Matthew D.
Hansen, James
Tassone, Caterina
Aich, Valentin
Adusumilli, Susheel
Beltrami, Hugo
Boyer, Tim
Cuesta-Valero, Francisco Jose
Desbruyeres, Damien
Domingues, Catia
Garcia-Garcia, Almudena
Gentine, Pierre
Gilson, John
Gorfer, Maximilian
Haimberger, Leopold
Ishii, Masayoshi
Johnson, Gregory C.
Killick, Rachel
King, Brian A.
Kirchengast, Gottfried
Kolodziejczyk, Nicolas
Lyman, John
Marzeion, Ben
Mayer, Michael
Monier, Maeva
Monselesan, Didier Paolo
Purkey, Sarah
Roemmich, Dean
Schweiger, Axel
Seneviratne, Sonia
Shepherd, Andrew
Slater, Donald A.
Steiner, Andrea K.
Straneo, Fiammetta
Timmermans, Mary-Louise
Wijffels, Susan E.
Heat stored in the Earth system:where does the energy go?
topic_facet Sea-level rise
Surface temperature
GPS radio occultation
Global ocean
Climate-change
Mass-balance
Artic amplification
Southern ocean
North Atlantic
Ice discharge
description Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system - and particularly how much and where the heat is distributed - is fundamental to understanding how this affects warming ocean, atmosphere and land, rising surface temperature, sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2018. The study obtains a consistent long-term Earth system heat gain over the period 1971-2018, with a total heat gain of 358 +/- 37 ZJ, which is equivalent to a global heating rate of 0.47 +/- 0 .1 Wm(-2). Over the period 1971-2018 (2010-2018), the majority of heat gain is reported for the global ocean with 89% (90 %), with 52% for both periods in the upper 700m depth, 28% (30 %) for the 700-2000m depth layer and 9% (8 %) below 2000m depth. Heat gain over land amounts to 6% (5 %) over these periods, 4% (3 %) is available for the melting of grounded and floating ice, and 1% (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing. the EEI amounts to 0.87 +/- 0.12Wm(-2) during 2010-2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87Wm(-2), bringing ...
format Article in Journal/Newspaper
author von Schuckmann, Karina
Cheng, Lijing
Palmer, Matthew D.
Hansen, James
Tassone, Caterina
Aich, Valentin
Adusumilli, Susheel
Beltrami, Hugo
Boyer, Tim
Cuesta-Valero, Francisco Jose
Desbruyeres, Damien
Domingues, Catia
Garcia-Garcia, Almudena
Gentine, Pierre
Gilson, John
Gorfer, Maximilian
Haimberger, Leopold
Ishii, Masayoshi
Johnson, Gregory C.
Killick, Rachel
King, Brian A.
Kirchengast, Gottfried
Kolodziejczyk, Nicolas
Lyman, John
Marzeion, Ben
Mayer, Michael
Monier, Maeva
Monselesan, Didier Paolo
Purkey, Sarah
Roemmich, Dean
Schweiger, Axel
Seneviratne, Sonia
Shepherd, Andrew
Slater, Donald A.
Steiner, Andrea K.
Straneo, Fiammetta
Timmermans, Mary-Louise
Wijffels, Susan E.
author_facet von Schuckmann, Karina
Cheng, Lijing
Palmer, Matthew D.
Hansen, James
Tassone, Caterina
Aich, Valentin
Adusumilli, Susheel
Beltrami, Hugo
Boyer, Tim
Cuesta-Valero, Francisco Jose
Desbruyeres, Damien
Domingues, Catia
Garcia-Garcia, Almudena
Gentine, Pierre
Gilson, John
Gorfer, Maximilian
Haimberger, Leopold
Ishii, Masayoshi
Johnson, Gregory C.
Killick, Rachel
King, Brian A.
Kirchengast, Gottfried
Kolodziejczyk, Nicolas
Lyman, John
Marzeion, Ben
Mayer, Michael
Monier, Maeva
Monselesan, Didier Paolo
Purkey, Sarah
Roemmich, Dean
Schweiger, Axel
Seneviratne, Sonia
Shepherd, Andrew
Slater, Donald A.
Steiner, Andrea K.
Straneo, Fiammetta
Timmermans, Mary-Louise
Wijffels, Susan E.
author_sort von Schuckmann, Karina
title Heat stored in the Earth system:where does the energy go?
title_short Heat stored in the Earth system:where does the energy go?
title_full Heat stored in the Earth system:where does the energy go?
title_fullStr Heat stored in the Earth system:where does the energy go?
title_full_unstemmed Heat stored in the Earth system:where does the energy go?
title_sort heat stored in the earth system:where does the energy go?
publishDate 2020
url https://risweb.st-andrews.ac.uk/portal/en/researchoutput/heat-stored-in-the-earth-system(a09e38ce-2230-44fe-a714-aac9baea9065).html
https://doi.org/10.5194/essd-12-2013-2020
https://research-repository.st-andrews.ac.uk/bitstream/10023/21568/1/von_Schuckmann_2020_ESED_heat_stored_CC.pdf
geographic Southern Ocean
geographic_facet Southern Ocean
genre North Atlantic
Southern Ocean
genre_facet North Atlantic
Southern Ocean
op_source von Schuckmann , K , Cheng , L , Palmer , M D , Hansen , J , Tassone , C , Aich , V , Adusumilli , S , Beltrami , H , Boyer , T , Cuesta-Valero , F J , Desbruyeres , D , Domingues , C , Garcia-Garcia , A , Gentine , P , Gilson , J , Gorfer , M , Haimberger , L , Ishii , M , Johnson , G C , Killick , R , King , B A , Kirchengast , G , Kolodziejczyk , N , Lyman , J , Marzeion , B , Mayer , M , Monier , M , Monselesan , D P , Purkey , S , Roemmich , D , Schweiger , A , Seneviratne , S , Shepherd , A , Slater , D A , Steiner , A K , Straneo , F , Timmermans , M-L & Wijffels , S E 2020 , ' Heat stored in the Earth system : where does the energy go? ' , Earth System Science Data , vol. 12 , no. 3 , pp. 2013-2041 . https://doi.org/10.5194/essd-12-2013-2020
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/essd-12-2013-2020
container_title Earth System Science Data
container_volume 12
container_issue 3
container_start_page 2013
op_container_end_page 2041
_version_ 1766136162019180544
spelling ftunstandrewcris:oai:risweb.st-andrews.ac.uk:publications/a09e38ce-2230-44fe-a714-aac9baea9065 2023-05-15T17:36:37+02:00 Heat stored in the Earth system:where does the energy go? von Schuckmann, Karina Cheng, Lijing Palmer, Matthew D. Hansen, James Tassone, Caterina Aich, Valentin Adusumilli, Susheel Beltrami, Hugo Boyer, Tim Cuesta-Valero, Francisco Jose Desbruyeres, Damien Domingues, Catia Garcia-Garcia, Almudena Gentine, Pierre Gilson, John Gorfer, Maximilian Haimberger, Leopold Ishii, Masayoshi Johnson, Gregory C. Killick, Rachel King, Brian A. Kirchengast, Gottfried Kolodziejczyk, Nicolas Lyman, John Marzeion, Ben Mayer, Michael Monier, Maeva Monselesan, Didier Paolo Purkey, Sarah Roemmich, Dean Schweiger, Axel Seneviratne, Sonia Shepherd, Andrew Slater, Donald A. Steiner, Andrea K. Straneo, Fiammetta Timmermans, Mary-Louise Wijffels, Susan E. 2020-09-07 application/pdf https://risweb.st-andrews.ac.uk/portal/en/researchoutput/heat-stored-in-the-earth-system(a09e38ce-2230-44fe-a714-aac9baea9065).html https://doi.org/10.5194/essd-12-2013-2020 https://research-repository.st-andrews.ac.uk/bitstream/10023/21568/1/von_Schuckmann_2020_ESED_heat_stored_CC.pdf eng eng info:eu-repo/semantics/openAccess von Schuckmann , K , Cheng , L , Palmer , M D , Hansen , J , Tassone , C , Aich , V , Adusumilli , S , Beltrami , H , Boyer , T , Cuesta-Valero , F J , Desbruyeres , D , Domingues , C , Garcia-Garcia , A , Gentine , P , Gilson , J , Gorfer , M , Haimberger , L , Ishii , M , Johnson , G C , Killick , R , King , B A , Kirchengast , G , Kolodziejczyk , N , Lyman , J , Marzeion , B , Mayer , M , Monier , M , Monselesan , D P , Purkey , S , Roemmich , D , Schweiger , A , Seneviratne , S , Shepherd , A , Slater , D A , Steiner , A K , Straneo , F , Timmermans , M-L & Wijffels , S E 2020 , ' Heat stored in the Earth system : where does the energy go? ' , Earth System Science Data , vol. 12 , no. 3 , pp. 2013-2041 . https://doi.org/10.5194/essd-12-2013-2020 Sea-level rise Surface temperature GPS radio occultation Global ocean Climate-change Mass-balance Artic amplification Southern ocean North Atlantic Ice discharge article 2020 ftunstandrewcris https://doi.org/10.5194/essd-12-2013-2020 2022-07-21T07:01:22Z Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system - and particularly how much and where the heat is distributed - is fundamental to understanding how this affects warming ocean, atmosphere and land, rising surface temperature, sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2018. The study obtains a consistent long-term Earth system heat gain over the period 1971-2018, with a total heat gain of 358 +/- 37 ZJ, which is equivalent to a global heating rate of 0.47 +/- 0 .1 Wm(-2). Over the period 1971-2018 (2010-2018), the majority of heat gain is reported for the global ocean with 89% (90 %), with 52% for both periods in the upper 700m depth, 28% (30 %) for the 700-2000m depth layer and 9% (8 %) below 2000m depth. Heat gain over land amounts to 6% (5 %) over these periods, 4% (3 %) is available for the melting of grounded and floating ice, and 1% (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing. the EEI amounts to 0.87 +/- 0.12Wm(-2) during 2010-2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87Wm(-2), bringing ... Article in Journal/Newspaper North Atlantic Southern Ocean University of St Andrews: Research Portal Southern Ocean Earth System Science Data 12 3 2013 2041