id ftunstandrewcris:oai:research-portal.st-andrews.ac.uk:publications/8881bdb9-02ea-433e-999c-689c29b5d051
record_format openpolar
spelling ftunstandrewcris:oai:research-portal.st-andrews.ac.uk:publications/8881bdb9-02ea-433e-999c-689c29b5d051 2024-06-23T07:53:50+00:00 Snowball Earth climate dynamics and Cryogenian geology-geobiology Hoffman, Paul F. Abbot, Dorian S. Ashkenazy, Yosef Benn, Douglas I. Brocks, Jochen J. Cohen, Phoebe A. Cox, Grant M. Creveling, Jessica R. Donnadieu, Yannick Erwin, Douglas H. Fairchild, Ian J. Ferreira, David Goodman, Jason C. Halverson, Galen P. Jansen, Malte F. Le Hir, Guillaume Love, Gordon D. Macdonald, Francis A. Maloof, Adam C. Partin, Camille A. Ramstein, Gilles Rose, Brian E. J. Rose, Catherine V. Sadler, Peter M. Tziperman, Eli Voigt, Aiko Warren, Stephen G. 2017-11-08 application/pdf https://research-portal.st-andrews.ac.uk/en/researchoutput/snowball-earth-climate-dynamics-and-cryogenian-geologygeobiology(8881bdb9-02ea-433e-999c-689c29b5d051).html https://doi.org/10.1126/sciadv.1600983 https://research-repository.st-andrews.ac.uk/bitstream/10023/12187/1/Hoffman_2017_SciAdv_SnowballEarth_CC.pdf eng eng https://research-portal.st-andrews.ac.uk/en/researchoutput/snowball-earth-climate-dynamics-and-cryogenian-geologygeobiology(8881bdb9-02ea-433e-999c-689c29b5d051).html info:eu-repo/semantics/openAccess Hoffman , P F , Abbot , D S , Ashkenazy , Y , Benn , D I , Brocks , J J , Cohen , P A , Cox , G M , Creveling , J R , Donnadieu , Y , Erwin , D H , Fairchild , I J , Ferreira , D , Goodman , J C , Halverson , G P , Jansen , M F , Le Hir , G , Love , G D , Macdonald , F A , Maloof , A C , Partin , C A , Ramstein , G , Rose , B E J , Rose , C V , Sadler , P M , Tziperman , E , Voigt , A & Warren , S G 2017 , ' Snowball Earth climate dynamics and Cryogenian geology-geobiology ' , Science Advances , vol. 3 , no. 11 , e1600983 . https://doi.org/10.1126/sciadv.1600983 article 2017 ftunstandrewcris https://doi.org/10.1126/sciadv.1600983 2024-06-13T00:57:52Z Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO 2 was 10 2 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO 2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms. Article in Journal/Newspaper Ice Sheet University of St Andrews: Research Portal Science Advances 3 11
institution Open Polar
collection University of St Andrews: Research Portal
op_collection_id ftunstandrewcris
language English
description Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO 2 was 10 2 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO 2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.
format Article in Journal/Newspaper
author Hoffman, Paul F.
Abbot, Dorian S.
Ashkenazy, Yosef
Benn, Douglas I.
Brocks, Jochen J.
Cohen, Phoebe A.
Cox, Grant M.
Creveling, Jessica R.
Donnadieu, Yannick
Erwin, Douglas H.
Fairchild, Ian J.
Ferreira, David
Goodman, Jason C.
Halverson, Galen P.
Jansen, Malte F.
Le Hir, Guillaume
Love, Gordon D.
Macdonald, Francis A.
Maloof, Adam C.
Partin, Camille A.
Ramstein, Gilles
Rose, Brian E. J.
Rose, Catherine V.
Sadler, Peter M.
Tziperman, Eli
Voigt, Aiko
Warren, Stephen G.
spellingShingle Hoffman, Paul F.
Abbot, Dorian S.
Ashkenazy, Yosef
Benn, Douglas I.
Brocks, Jochen J.
Cohen, Phoebe A.
Cox, Grant M.
Creveling, Jessica R.
Donnadieu, Yannick
Erwin, Douglas H.
Fairchild, Ian J.
Ferreira, David
Goodman, Jason C.
Halverson, Galen P.
Jansen, Malte F.
Le Hir, Guillaume
Love, Gordon D.
Macdonald, Francis A.
Maloof, Adam C.
Partin, Camille A.
Ramstein, Gilles
Rose, Brian E. J.
Rose, Catherine V.
Sadler, Peter M.
Tziperman, Eli
Voigt, Aiko
Warren, Stephen G.
Snowball Earth climate dynamics and Cryogenian geology-geobiology
author_facet Hoffman, Paul F.
Abbot, Dorian S.
Ashkenazy, Yosef
Benn, Douglas I.
Brocks, Jochen J.
Cohen, Phoebe A.
Cox, Grant M.
Creveling, Jessica R.
Donnadieu, Yannick
Erwin, Douglas H.
Fairchild, Ian J.
Ferreira, David
Goodman, Jason C.
Halverson, Galen P.
Jansen, Malte F.
Le Hir, Guillaume
Love, Gordon D.
Macdonald, Francis A.
Maloof, Adam C.
Partin, Camille A.
Ramstein, Gilles
Rose, Brian E. J.
Rose, Catherine V.
Sadler, Peter M.
Tziperman, Eli
Voigt, Aiko
Warren, Stephen G.
author_sort Hoffman, Paul F.
title Snowball Earth climate dynamics and Cryogenian geology-geobiology
title_short Snowball Earth climate dynamics and Cryogenian geology-geobiology
title_full Snowball Earth climate dynamics and Cryogenian geology-geobiology
title_fullStr Snowball Earth climate dynamics and Cryogenian geology-geobiology
title_full_unstemmed Snowball Earth climate dynamics and Cryogenian geology-geobiology
title_sort snowball earth climate dynamics and cryogenian geology-geobiology
publishDate 2017
url https://research-portal.st-andrews.ac.uk/en/researchoutput/snowball-earth-climate-dynamics-and-cryogenian-geologygeobiology(8881bdb9-02ea-433e-999c-689c29b5d051).html
https://doi.org/10.1126/sciadv.1600983
https://research-repository.st-andrews.ac.uk/bitstream/10023/12187/1/Hoffman_2017_SciAdv_SnowballEarth_CC.pdf
genre Ice Sheet
genre_facet Ice Sheet
op_source Hoffman , P F , Abbot , D S , Ashkenazy , Y , Benn , D I , Brocks , J J , Cohen , P A , Cox , G M , Creveling , J R , Donnadieu , Y , Erwin , D H , Fairchild , I J , Ferreira , D , Goodman , J C , Halverson , G P , Jansen , M F , Le Hir , G , Love , G D , Macdonald , F A , Maloof , A C , Partin , C A , Ramstein , G , Rose , B E J , Rose , C V , Sadler , P M , Tziperman , E , Voigt , A & Warren , S G 2017 , ' Snowball Earth climate dynamics and Cryogenian geology-geobiology ' , Science Advances , vol. 3 , no. 11 , e1600983 . https://doi.org/10.1126/sciadv.1600983
op_relation https://research-portal.st-andrews.ac.uk/en/researchoutput/snowball-earth-climate-dynamics-and-cryogenian-geologygeobiology(8881bdb9-02ea-433e-999c-689c29b5d051).html
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1126/sciadv.1600983
container_title Science Advances
container_volume 3
container_issue 11
_version_ 1802645665284620288