North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons
Archean cratons are composites of terranes formed at different times, juxtaposed during craton assembly. Cratons are underpinned by a deep lithospheric root, and models for the development of this cratonic lithosphere include both vertical and horizontal accretion. How different Archean terranes at...
Published in: | Earth and Planetary Science Letters |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://research-portal.st-andrews.ac.uk/en/publications/6b0039d4-3f64-45a2-bdfe-9cda3e5ea970 https://doi.org/10.1016/j.epsl.2020.116091 https://research-repository.st-andrews.ac.uk/bitstream/10023/19368/1/Gardiner_2020_EPSL_NorthAtlanticCraton_CC.pdf |
_version_ | 1832473302032973824 |
---|---|
author | Gardiner, Nicholas J. Kirkland, Christopher L. Hollis, Julie A. Cawood, Peter A. Nebel, Oliver Szilas, Kristoffer Yakymchuk, Chris |
author_facet | Gardiner, Nicholas J. Kirkland, Christopher L. Hollis, Julie A. Cawood, Peter A. Nebel, Oliver Szilas, Kristoffer Yakymchuk, Chris |
author_sort | Gardiner, Nicholas J. |
collection | University of St Andrews: Research Portal |
container_start_page | 116091 |
container_title | Earth and Planetary Science Letters |
container_volume | 534 |
description | Archean cratons are composites of terranes formed at different times, juxtaposed during craton assembly. Cratons are underpinned by a deep lithospheric root, and models for the development of this cratonic lithosphere include both vertical and horizontal accretion. How different Archean terranes at the surface are reflected vertically within the lithosphere, which might inform on modes of formation, is poorly constrained. Kimberlites, which originate from significant depths within the upper mantle, sample cratonic interiors. The North Atlantic Craton, West Greenland, comprises Eoarchean and Mesoarchean gneiss terranes – the latter including the Akia Terrane – assembled during the late Archean. We report U–Pb and Hf isotopic, and trace element, data measured in zircon xenocrysts from a Neoproterozoic (557 Ma) kimberlite which intruded the Mesoarchean Akia Terrane. The zircon trace element profiles suggest they crystallized from evolved magmas, and their Eo- to Neoarchean U–Pb ages match the surrounding gneiss terranes, and highlight that magmatism was episodic. Zircon Hf isotope values lie within two crustal evolution trends: a Mesoarchean trend and an Eoarchean trend. The Eoarchean trend is anchored on 3.8 Ga orthogneiss, and includes 3.6–3.5 Ga, 2.7 and 2.5–2.4 Ga aged zircons. The Mesoarchean Akia Terrane may have been built upon mafic crust, in which case all zircons whose Hf isotopes lie within the Eoarchean trend were derived from the surrounding Eoarchean gneiss terranes, emplaced under the Akia Terrane after ca. 2.97 or 2.7 Ga, perhaps during late Archean terrane assembly. Kimberlite-hosted peridotite rhenium depletion model ages suggest a late Archean stabilization for the lithospheric mantle. The zircon data support a model of lithospheric growth via tectonic stacking for the North Atlantic Craton. |
format | Article in Journal/Newspaper |
genre | Greenland North Atlantic |
genre_facet | Greenland North Atlantic |
geographic | Greenland |
geographic_facet | Greenland |
id | ftunstandrewcris:oai:research-portal.st-andrews.ac.uk:publications/6b0039d4-3f64-45a2-bdfe-9cda3e5ea970 |
institution | Open Polar |
language | English |
op_collection_id | ftunstandrewcris |
op_doi | https://doi.org/10.1016/j.epsl.2020.116091 |
op_rights | info:eu-repo/semantics/openAccess |
op_source | Gardiner , N J , Kirkland , C L , Hollis , J A , Cawood , P A , Nebel , O , Szilas , K & Yakymchuk , C 2020 , ' North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons ' , Earth and Planetary Science Letters , vol. 534 , 116091 . https://doi.org/10.1016/j.epsl.2020.116091 |
publishDate | 2020 |
record_format | openpolar |
spelling | ftunstandrewcris:oai:research-portal.st-andrews.ac.uk:publications/6b0039d4-3f64-45a2-bdfe-9cda3e5ea970 2025-05-18T14:02:39+00:00 North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons Gardiner, Nicholas J. Kirkland, Christopher L. Hollis, Julie A. Cawood, Peter A. Nebel, Oliver Szilas, Kristoffer Yakymchuk, Chris 2020-03-15 application/pdf https://research-portal.st-andrews.ac.uk/en/publications/6b0039d4-3f64-45a2-bdfe-9cda3e5ea970 https://doi.org/10.1016/j.epsl.2020.116091 https://research-repository.st-andrews.ac.uk/bitstream/10023/19368/1/Gardiner_2020_EPSL_NorthAtlanticCraton_CC.pdf eng eng info:eu-repo/semantics/openAccess Gardiner , N J , Kirkland , C L , Hollis , J A , Cawood , P A , Nebel , O , Szilas , K & Yakymchuk , C 2020 , ' North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons ' , Earth and Planetary Science Letters , vol. 534 , 116091 . https://doi.org/10.1016/j.epsl.2020.116091 lamprophyre Archean Archaean Greenland Itsaq Isua Isukasia Akia Terrane SCLM lithosphere mantle article 2020 ftunstandrewcris https://doi.org/10.1016/j.epsl.2020.116091 2025-04-24T23:38:19Z Archean cratons are composites of terranes formed at different times, juxtaposed during craton assembly. Cratons are underpinned by a deep lithospheric root, and models for the development of this cratonic lithosphere include both vertical and horizontal accretion. How different Archean terranes at the surface are reflected vertically within the lithosphere, which might inform on modes of formation, is poorly constrained. Kimberlites, which originate from significant depths within the upper mantle, sample cratonic interiors. The North Atlantic Craton, West Greenland, comprises Eoarchean and Mesoarchean gneiss terranes – the latter including the Akia Terrane – assembled during the late Archean. We report U–Pb and Hf isotopic, and trace element, data measured in zircon xenocrysts from a Neoproterozoic (557 Ma) kimberlite which intruded the Mesoarchean Akia Terrane. The zircon trace element profiles suggest they crystallized from evolved magmas, and their Eo- to Neoarchean U–Pb ages match the surrounding gneiss terranes, and highlight that magmatism was episodic. Zircon Hf isotope values lie within two crustal evolution trends: a Mesoarchean trend and an Eoarchean trend. The Eoarchean trend is anchored on 3.8 Ga orthogneiss, and includes 3.6–3.5 Ga, 2.7 and 2.5–2.4 Ga aged zircons. The Mesoarchean Akia Terrane may have been built upon mafic crust, in which case all zircons whose Hf isotopes lie within the Eoarchean trend were derived from the surrounding Eoarchean gneiss terranes, emplaced under the Akia Terrane after ca. 2.97 or 2.7 Ga, perhaps during late Archean terrane assembly. Kimberlite-hosted peridotite rhenium depletion model ages suggest a late Archean stabilization for the lithospheric mantle. The zircon data support a model of lithospheric growth via tectonic stacking for the North Atlantic Craton. Article in Journal/Newspaper Greenland North Atlantic University of St Andrews: Research Portal Greenland Earth and Planetary Science Letters 534 116091 |
spellingShingle | lamprophyre Archean Archaean Greenland Itsaq Isua Isukasia Akia Terrane SCLM lithosphere mantle Gardiner, Nicholas J. Kirkland, Christopher L. Hollis, Julie A. Cawood, Peter A. Nebel, Oliver Szilas, Kristoffer Yakymchuk, Chris North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons |
title | North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons |
title_full | North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons |
title_fullStr | North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons |
title_full_unstemmed | North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons |
title_short | North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons |
title_sort | north atlantic craton architecture revealed by kimberlite-hosted crustal zircons |
topic | lamprophyre Archean Archaean Greenland Itsaq Isua Isukasia Akia Terrane SCLM lithosphere mantle |
topic_facet | lamprophyre Archean Archaean Greenland Itsaq Isua Isukasia Akia Terrane SCLM lithosphere mantle |
url | https://research-portal.st-andrews.ac.uk/en/publications/6b0039d4-3f64-45a2-bdfe-9cda3e5ea970 https://doi.org/10.1016/j.epsl.2020.116091 https://research-repository.st-andrews.ac.uk/bitstream/10023/19368/1/Gardiner_2020_EPSL_NorthAtlanticCraton_CC.pdf |