Renewable energy resources of the marine environment and its control requirements

This paper presents a series of devices generating renewable energy from the marine environment, which in recent years have attracted increasing interest. Especially we describe the major types of Floating Wind Generators, Marine Current Turbines and various devices based on wave energy. It highligh...

Full description

Bibliographic Details
Published in:Revista Iberoamericana de Automática e Informática Industrial RIAI
Main Authors: García, E., Correcher, A., Quiles, E., Morant, F.
Format: Article in Journal/Newspaper
Language:Spanish
Published: Universitat Politècnica de València 2016
Subjects:
Online Access:https://polipapers.upv.es/index.php/RIAI/article/view/9295
https://doi.org/10.1016/j.riai.2016.03.002
id ftunpvalenciaojs:oai:ojs.upv.es:article/9295
record_format openpolar
institution Open Polar
collection Universitat Politècnica de València: PoliPapers
op_collection_id ftunpvalenciaojs
language Spanish
topic Floating Wind Generators
Marine Current Turbines
Wave Energy
Supervisory Control Engineering
Condition Monitoring
Generadores Eólicos Flotantes
Turbinas de Corrientes Marinas
Energía Undimotriz
spellingShingle Floating Wind Generators
Marine Current Turbines
Wave Energy
Supervisory Control Engineering
Condition Monitoring
Generadores Eólicos Flotantes
Turbinas de Corrientes Marinas
Energía Undimotriz
García, E.
Correcher, A.
Quiles, E.
Morant, F.
Renewable energy resources of the marine environment and its control requirements
topic_facet Floating Wind Generators
Marine Current Turbines
Wave Energy
Supervisory Control Engineering
Condition Monitoring
Generadores Eólicos Flotantes
Turbinas de Corrientes Marinas
Energía Undimotriz
description This paper presents a series of devices generating renewable energy from the marine environment, which in recent years have attracted increasing interest. Especially we describe the major types of Floating Wind Generators, Marine Current Turbines and various devices based on wave energy. It highlights key requirements to be considered from the point of view of control engineering, considering the objectives of achieving economic viability in view of its stability, reliability and availability in a particularly aggressive marine environment, where maintenance operations are particularly costly. En este artículo se presentan una serie de dispositivos generadores de energía renovable procedente del entorno marino, que en los últimos años han despertado creciente interés. En especial se describen los tipos principales de Generadores Eólicos Flotantes, las Turbinas de Corriente Marina y diversos dispositivos basados en Energía Undimotriz. Se destacan los principales requerimientos a considerar bajo el punto de vista de la ingeniería de control, considerando los objetivos de viabilidad económica a alcanzar teniendo en cuenta su estabilidad, fiabilidad y disponibilidad en un medio marino especialmente agresivo, donde las operaciones de mantenimiento resultan especialmente costosas.
format Article in Journal/Newspaper
author García, E.
Correcher, A.
Quiles, E.
Morant, F.
author_facet García, E.
Correcher, A.
Quiles, E.
Morant, F.
author_sort García, E.
title Renewable energy resources of the marine environment and its control requirements
title_short Renewable energy resources of the marine environment and its control requirements
title_full Renewable energy resources of the marine environment and its control requirements
title_fullStr Renewable energy resources of the marine environment and its control requirements
title_full_unstemmed Renewable energy resources of the marine environment and its control requirements
title_sort renewable energy resources of the marine environment and its control requirements
publisher Universitat Politècnica de València
publishDate 2016
url https://polipapers.upv.es/index.php/RIAI/article/view/9295
https://doi.org/10.1016/j.riai.2016.03.002
genre Arctic
genre_facet Arctic
op_source Revista Iberoamericana de Automática e Informática industrial; Vol. 13, Núm. 2 (2016); 141-161
1697-7920
1697-7912
op_relation https://polipapers.upv.es/index.php/RIAI/article/view/9295/9309
Avia F. 2008. Plantas Eólicas Marinas. Departamento de Energía Eólica. CENER www.fundacionenergia.es/pdfs/Eolica%20Nov%202008
Ben Elghali, S.E., Benbouzid, M.E.H., Ahmed-Ali, T., Charpentier J.F., Mekri, F. 2009. High-Order Sliding Mode Control of DFIG-Based Marine Current Turbine. Electric Machines and Drives Conference. IEMDC '09. IEEE International.
Ben Elghali, S. E., Benbouzid, M. E. H., & Charpentier, J. F. 2007. Marine tidal current electric power generation technology: State of the art and current status. In Electric Machines & Drives Conference, 2007. IEMDC'07. IEEE International (Vol. 2, pp. 1407-1412). IEEE.
Betti, G., Farina, M., Marzorati, A., Scattolini, R., Guagliardi., G. A. 2012. Modeling and control of a floating wind turbine with spar buoy platform. In Energy Conference and Exhibition (ENERGYCON), 2012 IEEE International (pp. 189-194). IEEE.
Betti, G., Farina, M., Guagliardi, G. A., Marzorati, A., Scattolini, R. 2014. Development of a Control-Oriented Model of Floating Wind Turbines. IEEE Transactions On Control Systems Technology, Vol. 22, No. 1, January 2014.
Blue Energy Canada Inc., (2000), www.bluenergy.com, Canada.
Boud, R., 2003. Status and Research and Developement Priorities. Wave and Marine Current Energy. UK Department of Trade and Industry (DTI).
Caraiman, G., Nichita, C., Mînzul, V., Dakyio, B., Jo, C.H. 2011. Concept study of offshore wind and tidal hybrid conversion based on real time simulation. International Conference on Renewable Energies and Power Quality (ICREPQ’11) Las Palmas de Gran Canaria (Spain), 13th to 15th April.
CEC (Commission of the European Communities), DGXII. 1996. Wave Energy Project Results: The Exploitation of Tidal Marine Currents. Report EUR16683EN.
Comission, E. Ocean energy conversion in Europe: Recent advancements and prospects. 2006. Centre for Renewable Energy Sources: Pikermi, Greece, 36.
de Sousa Prado, M. G., Gardner, F., Damen, M., & Polinder, H. 2006. Modelling and test results of the Archimedes wave swing. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220(8), 855-868.
Drew, B., Plummer, A. R., & Sahinkaya, M. N. 2009. A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(8), 887-902.
Edwards, K., & Mekhiche, M. 2013. Ocean Testing of a Wave-Capturing PowerBuoy. In Marine Energy Technology Symposium, Washington, DC.
Fantidis, J.G., Potolias, C., Bandekas D.V. 2011. Wind turbine blade nondestructive testing with a transportable Radiography system. Science and Technology of Nuclear Installations. Volume 2011.
Fuglseth T.P., Undeland, T. M. 2006. Modelling of floating wind turbines for simulation and design of axial thrust and power control strategies. Proceedings of Renewable Energy 2006, Chiba, Japan. 2006.
García, E., Morant, F., Correcher, A., Quiles, E., Llanes, O. 2009. Seguimiento de Estado, Diagnóstico de Fallos y Mantenimiento Industrial: una visión integrada. Proceedings de la Novena Semana Tecnológica. La Habana. 2009.
García, E., Fabuel, D., Pizá, R., Morant, F., Correcher, A., Quiles, E. 2012. Hydro-wind kinetics integrated module for the renewable energy generation. In OCEANS, 2012-Yeosu (pp. 1-6). IEEE.
García, E., Morant, F., Correcher, A., Quiles, E., Fabuel, D., Rodriguez, L., Llanes, O. 2012. Módulo Integrado de Cinética Hidro-Eólica para la Generación Eléctrica Renovable. Congreso Latinoamericano de Control. Lima. 2012.
García, E., Pizá, R., Benavides, X., Quiles, E., Correcher, A., Morant, F. 2014. Mechanical Augmentation Channel Design for Turbine Current Generators. Advances in Mechanical Engineering, 6, 650131.
García, F. P. G., Tobias, A. M., Pérez, J. M. P., Papaelias, M. 2012b. Condition monitoring of wind turbines: Techniques and methods. Renewable Energy, 46, 169-178.
Geyler, M., Caselitz, P. 2007. Individual Blade Pitch Control Design for Load Reduction on Large Wind Turbines. Proc. EWEC 2007, Milano.
González, A. M. 2008. Estado del arte del control de la potencia en generadores eólicos” Revista Investigaciones Aplicadas. Universidad Pontificia Bolivariana (2008)
Guo, P., Infield, D., Yang, X. 2012. Wind turbine generator conditionmonitoring using temperature trend analysis. Sustainable Energy, IEEE Transactions on, 3(1), 124-133.
Hameed, Z., Hong, Y.S., Cho, Y.M., Ahn, S.H., Song, C.K. 2009. Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable Energy Reviews, 13(1):1–39.
Henderson, R. 2006. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable energy, 31(2), 271-283.
Isaacs, J.D., Seymour, R.J. 1973. The Ocean as a Power Resource, Int. Journal of Environmental Studies, vol. 4(3), pp 201-205.
Jonkman, J. M., Buhl Jr, M. L. 2007. Loads analysis of a floating offshore wind turbine using fully coupled simulation. In Wind Power Conference and Exhibition, Los Angeles, CA.
Jonkman, J. M., Matha, D. 2011. Dynamics of offshore floating wind turbines—analysis of three concepts. Wind Energy, 14(4), 557-569.
Justino, P.P., de O. Falcão, A.F. 1999. Rotational Speed Control of an OWC Wave Power Plant. ASME. Journal of Offshore Mechanics and Arctic Enineering. 1999;121(2):65-70. doi:10.1115/1.2830079.
Kanade, N., Joshi, A., Sudhakar. K. 2008. Multivariable Control Strategy for Large Scale Wind Turbine. (2008). XXXII National Systems Conference. Department of Electrical Engineering & Systems Society of India Dec. 17- 19, 2008.
Kivikunnas, S. 1998. Overview of process trend analysis methods and applications. In ERUDIT Workshop on Applications in Pulp and Paper Industry (pp. 395-408).
Kofoed, J. P., Frigaard, P., Friis-Madsen, E., Sørensen, H. C. 2006. Prototype testing of the wave energy converter wave dragon. Renewable energy, 31(2), 181-189.
Kristiansen, E., Hjulstad, Å., & Egeland, O. 2005. State-space representation of radiation forces in time-domain vessel models. Ocean Engineering, 32(17), 2195-2216.
Lackner, M., Rotea. M. 2011. Structural control of floating wind turbines. Mechatronics 21 (2011) 704-719.
Legaz, R. 2013. Situación y perspectivas de las energias marinas en España. Jornada sobre Proyectos y Tecnologías de Captación de Energía Marina y Off-shore. 16 de Enero de 2013.
López, A., Andres Somolinos, J., & Ramon Nunez, L. 2014. Energetic modelling of primary converters for marine renewable energies. Revista Iberoamericana de Automatica e Informatica Industrial, 11(2), 224-235.
Luo, N., Bottasso, C.L., Karimi, H.R., Zapateiro, M. Semiactive Control for Floating Offshore Wind Turbines Subject to Aero-hydro Dynamic Loads. International Conference on Renewable Energies and Power Quality (ICREPQ’11) Las Palmas de Gran Canaria (Spain), 13th to 15th April, 2011
May, A., McMillan, D., & Thöns, S. 2015. Economic analysis of condition monitoring systems for offshore wind turbine sub-systems. Renewable Power Generation, IET, 9(8), 900-907.
Mehlum, E. 1986. Tapchan. In Hydrodynamics of Ocean Wave-Energy Utilization (pp. 51-55). Springer Berlin Heidelberg.
Musial, W., Jonkman, J., Sclavounos, P., & Wayman, L. 2007. Engineering challenges for floating offshore wind turbines. Golden Colorado: National Renewable Energy Laboratory.
Namik, H., Stol, K. 2010. Individual blade pitch control of floating offshore wind turbines." Wind Energy 13.1 (2010): 74-85.
Namik, H., & Stol, K. J. 2014. Individual blade pitch control of a spar-buoy floating wind turbine. Control Systems Technology, IEEE Transactions on, 22(1), 214-223.
Nasa Standard. Trend analysis techniques, 1988. NASA Data Systems/Trend Analisys Division. Office of the Associate Administrator for Safety, Reliability, Maintainability and Quality Assurance
Nielsen, F.G., Hanson, T. D., Skaare, B. 2006a. Integrated Dynamic Analysis of Floating Offshore Wind Turbines. OMAE 2006, Hamburg, Germany.
Nielsen, F.G., Hanson, T. D., Skaare, B. 2006b. Integrated Dynamic Analysis of Floating Offshore Wind Turbines. EWEC 2006, Athens, Greece.
Ocean Energy Conversion in Europe. Recent advancements and prospects. 2006. Published in the framework of the “Co-ordinated Action on Ocean Energy” (http://www.ca-oe.org) EU project under FP6 Priority: 6.1.3.2.3; Renewable Energy Technologies.
de O Falcão, A. F. 2002. Control of an oscillating-water-column wave power plant for maximum energy production. Applied Ocean Research, 24(2), 73-82.
de O Falcão, A. F., Rodrigues, R. J. A. 2002. Stochastic modelling of OWC wave power plant performance. Applied Ocean Research, 24(2), 59-71.
Ormaza, M. A. 2012. La energía renovable procedente de las olas. Ikastorratza, e-Revista de didáctica, (8), 1-14.
op_rights Copyright (c) 2018 Revista Iberoamericana de Automática e Informática industrial
http://creativecommons.org/licenses/by-nc-nd/4.0
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.1016/j.riai.2016.03.002
https://doi.org/10.1115/1.2830079
container_title Revista Iberoamericana de Automática e Informática Industrial RIAI
container_volume 13
container_issue 2
container_start_page 141
op_container_end_page 161
_version_ 1766302640427237376
spelling ftunpvalenciaojs:oai:ojs.upv.es:article/9295 2023-05-15T14:28:29+02:00 Renewable energy resources of the marine environment and its control requirements Recursos y sistemas energéticos renovables del entorno marino y sus requerimientos de control García, E. Correcher, A. Quiles, E. Morant, F. 2016-04-06 application/pdf https://polipapers.upv.es/index.php/RIAI/article/view/9295 https://doi.org/10.1016/j.riai.2016.03.002 spa spa Universitat Politècnica de València https://polipapers.upv.es/index.php/RIAI/article/view/9295/9309 Avia F. 2008. Plantas Eólicas Marinas. Departamento de Energía Eólica. CENER www.fundacionenergia.es/pdfs/Eolica%20Nov%202008 Ben Elghali, S.E., Benbouzid, M.E.H., Ahmed-Ali, T., Charpentier J.F., Mekri, F. 2009. High-Order Sliding Mode Control of DFIG-Based Marine Current Turbine. Electric Machines and Drives Conference. IEMDC '09. IEEE International. Ben Elghali, S. E., Benbouzid, M. E. H., & Charpentier, J. F. 2007. Marine tidal current electric power generation technology: State of the art and current status. In Electric Machines & Drives Conference, 2007. IEMDC'07. IEEE International (Vol. 2, pp. 1407-1412). IEEE. Betti, G., Farina, M., Marzorati, A., Scattolini, R., Guagliardi., G. A. 2012. Modeling and control of a floating wind turbine with spar buoy platform. In Energy Conference and Exhibition (ENERGYCON), 2012 IEEE International (pp. 189-194). IEEE. Betti, G., Farina, M., Guagliardi, G. A., Marzorati, A., Scattolini, R. 2014. Development of a Control-Oriented Model of Floating Wind Turbines. IEEE Transactions On Control Systems Technology, Vol. 22, No. 1, January 2014. Blue Energy Canada Inc., (2000), www.bluenergy.com, Canada. Boud, R., 2003. Status and Research and Developement Priorities. Wave and Marine Current Energy. UK Department of Trade and Industry (DTI). Caraiman, G., Nichita, C., Mînzul, V., Dakyio, B., Jo, C.H. 2011. Concept study of offshore wind and tidal hybrid conversion based on real time simulation. International Conference on Renewable Energies and Power Quality (ICREPQ’11) Las Palmas de Gran Canaria (Spain), 13th to 15th April. CEC (Commission of the European Communities), DGXII. 1996. Wave Energy Project Results: The Exploitation of Tidal Marine Currents. Report EUR16683EN. Comission, E. Ocean energy conversion in Europe: Recent advancements and prospects. 2006. Centre for Renewable Energy Sources: Pikermi, Greece, 36. de Sousa Prado, M. G., Gardner, F., Damen, M., & Polinder, H. 2006. Modelling and test results of the Archimedes wave swing. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220(8), 855-868. Drew, B., Plummer, A. R., & Sahinkaya, M. N. 2009. A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(8), 887-902. Edwards, K., & Mekhiche, M. 2013. Ocean Testing of a Wave-Capturing PowerBuoy. In Marine Energy Technology Symposium, Washington, DC. Fantidis, J.G., Potolias, C., Bandekas D.V. 2011. Wind turbine blade nondestructive testing with a transportable Radiography system. Science and Technology of Nuclear Installations. Volume 2011. Fuglseth T.P., Undeland, T. M. 2006. Modelling of floating wind turbines for simulation and design of axial thrust and power control strategies. Proceedings of Renewable Energy 2006, Chiba, Japan. 2006. García, E., Morant, F., Correcher, A., Quiles, E., Llanes, O. 2009. Seguimiento de Estado, Diagnóstico de Fallos y Mantenimiento Industrial: una visión integrada. Proceedings de la Novena Semana Tecnológica. La Habana. 2009. García, E., Fabuel, D., Pizá, R., Morant, F., Correcher, A., Quiles, E. 2012. Hydro-wind kinetics integrated module for the renewable energy generation. In OCEANS, 2012-Yeosu (pp. 1-6). IEEE. García, E., Morant, F., Correcher, A., Quiles, E., Fabuel, D., Rodriguez, L., Llanes, O. 2012. Módulo Integrado de Cinética Hidro-Eólica para la Generación Eléctrica Renovable. Congreso Latinoamericano de Control. Lima. 2012. García, E., Pizá, R., Benavides, X., Quiles, E., Correcher, A., Morant, F. 2014. Mechanical Augmentation Channel Design for Turbine Current Generators. Advances in Mechanical Engineering, 6, 650131. García, F. P. G., Tobias, A. M., Pérez, J. M. P., Papaelias, M. 2012b. Condition monitoring of wind turbines: Techniques and methods. Renewable Energy, 46, 169-178. Geyler, M., Caselitz, P. 2007. Individual Blade Pitch Control Design for Load Reduction on Large Wind Turbines. Proc. EWEC 2007, Milano. González, A. M. 2008. Estado del arte del control de la potencia en generadores eólicos” Revista Investigaciones Aplicadas. Universidad Pontificia Bolivariana (2008) Guo, P., Infield, D., Yang, X. 2012. Wind turbine generator conditionmonitoring using temperature trend analysis. Sustainable Energy, IEEE Transactions on, 3(1), 124-133. Hameed, Z., Hong, Y.S., Cho, Y.M., Ahn, S.H., Song, C.K. 2009. Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable Energy Reviews, 13(1):1–39. Henderson, R. 2006. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable energy, 31(2), 271-283. Isaacs, J.D., Seymour, R.J. 1973. The Ocean as a Power Resource, Int. Journal of Environmental Studies, vol. 4(3), pp 201-205. Jonkman, J. M., Buhl Jr, M. L. 2007. Loads analysis of a floating offshore wind turbine using fully coupled simulation. In Wind Power Conference and Exhibition, Los Angeles, CA. Jonkman, J. M., Matha, D. 2011. Dynamics of offshore floating wind turbines—analysis of three concepts. Wind Energy, 14(4), 557-569. Justino, P.P., de O. Falcão, A.F. 1999. Rotational Speed Control of an OWC Wave Power Plant. ASME. Journal of Offshore Mechanics and Arctic Enineering. 1999;121(2):65-70. doi:10.1115/1.2830079. Kanade, N., Joshi, A., Sudhakar. K. 2008. Multivariable Control Strategy for Large Scale Wind Turbine. (2008). XXXII National Systems Conference. Department of Electrical Engineering & Systems Society of India Dec. 17- 19, 2008. Kivikunnas, S. 1998. Overview of process trend analysis methods and applications. In ERUDIT Workshop on Applications in Pulp and Paper Industry (pp. 395-408). Kofoed, J. P., Frigaard, P., Friis-Madsen, E., Sørensen, H. C. 2006. Prototype testing of the wave energy converter wave dragon. Renewable energy, 31(2), 181-189. Kristiansen, E., Hjulstad, Å., & Egeland, O. 2005. State-space representation of radiation forces in time-domain vessel models. Ocean Engineering, 32(17), 2195-2216. Lackner, M., Rotea. M. 2011. Structural control of floating wind turbines. Mechatronics 21 (2011) 704-719. Legaz, R. 2013. Situación y perspectivas de las energias marinas en España. Jornada sobre Proyectos y Tecnologías de Captación de Energía Marina y Off-shore. 16 de Enero de 2013. López, A., Andres Somolinos, J., & Ramon Nunez, L. 2014. Energetic modelling of primary converters for marine renewable energies. Revista Iberoamericana de Automatica e Informatica Industrial, 11(2), 224-235. Luo, N., Bottasso, C.L., Karimi, H.R., Zapateiro, M. Semiactive Control for Floating Offshore Wind Turbines Subject to Aero-hydro Dynamic Loads. International Conference on Renewable Energies and Power Quality (ICREPQ’11) Las Palmas de Gran Canaria (Spain), 13th to 15th April, 2011 May, A., McMillan, D., & Thöns, S. 2015. Economic analysis of condition monitoring systems for offshore wind turbine sub-systems. Renewable Power Generation, IET, 9(8), 900-907. Mehlum, E. 1986. Tapchan. In Hydrodynamics of Ocean Wave-Energy Utilization (pp. 51-55). Springer Berlin Heidelberg. Musial, W., Jonkman, J., Sclavounos, P., & Wayman, L. 2007. Engineering challenges for floating offshore wind turbines. Golden Colorado: National Renewable Energy Laboratory. Namik, H., Stol, K. 2010. Individual blade pitch control of floating offshore wind turbines." Wind Energy 13.1 (2010): 74-85. Namik, H., & Stol, K. J. 2014. Individual blade pitch control of a spar-buoy floating wind turbine. Control Systems Technology, IEEE Transactions on, 22(1), 214-223. Nasa Standard. Trend analysis techniques, 1988. NASA Data Systems/Trend Analisys Division. Office of the Associate Administrator for Safety, Reliability, Maintainability and Quality Assurance Nielsen, F.G., Hanson, T. D., Skaare, B. 2006a. Integrated Dynamic Analysis of Floating Offshore Wind Turbines. OMAE 2006, Hamburg, Germany. Nielsen, F.G., Hanson, T. D., Skaare, B. 2006b. Integrated Dynamic Analysis of Floating Offshore Wind Turbines. EWEC 2006, Athens, Greece. Ocean Energy Conversion in Europe. Recent advancements and prospects. 2006. Published in the framework of the “Co-ordinated Action on Ocean Energy” (http://www.ca-oe.org) EU project under FP6 Priority: 6.1.3.2.3; Renewable Energy Technologies. de O Falcão, A. F. 2002. Control of an oscillating-water-column wave power plant for maximum energy production. Applied Ocean Research, 24(2), 73-82. de O Falcão, A. F., Rodrigues, R. J. A. 2002. Stochastic modelling of OWC wave power plant performance. Applied Ocean Research, 24(2), 59-71. Ormaza, M. A. 2012. La energía renovable procedente de las olas. Ikastorratza, e-Revista de didáctica, (8), 1-14. Copyright (c) 2018 Revista Iberoamericana de Automática e Informática industrial http://creativecommons.org/licenses/by-nc-nd/4.0 CC-BY-NC-ND Revista Iberoamericana de Automática e Informática industrial; Vol. 13, Núm. 2 (2016); 141-161 1697-7920 1697-7912 Floating Wind Generators Marine Current Turbines Wave Energy Supervisory Control Engineering Condition Monitoring Generadores Eólicos Flotantes Turbinas de Corrientes Marinas Energía Undimotriz info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Other 2016 ftunpvalenciaojs https://doi.org/10.1016/j.riai.2016.03.002 https://doi.org/10.1115/1.2830079 2022-01-07T06:51:07Z This paper presents a series of devices generating renewable energy from the marine environment, which in recent years have attracted increasing interest. Especially we describe the major types of Floating Wind Generators, Marine Current Turbines and various devices based on wave energy. It highlights key requirements to be considered from the point of view of control engineering, considering the objectives of achieving economic viability in view of its stability, reliability and availability in a particularly aggressive marine environment, where maintenance operations are particularly costly. En este artículo se presentan una serie de dispositivos generadores de energía renovable procedente del entorno marino, que en los últimos años han despertado creciente interés. En especial se describen los tipos principales de Generadores Eólicos Flotantes, las Turbinas de Corriente Marina y diversos dispositivos basados en Energía Undimotriz. Se destacan los principales requerimientos a considerar bajo el punto de vista de la ingeniería de control, considerando los objetivos de viabilidad económica a alcanzar teniendo en cuenta su estabilidad, fiabilidad y disponibilidad en un medio marino especialmente agresivo, donde las operaciones de mantenimiento resultan especialmente costosas. Article in Journal/Newspaper Arctic Universitat Politècnica de València: PoliPapers Revista Iberoamericana de Automática e Informática Industrial RIAI 13 2 141 161