Surface water extent dynamics from three periods of continuous Landsat time series; subregional differences across Argentine plains

The Pampean region in Argentina is an extensive plain characterized by abundant shallow lakes that fulfill many environmental, ecological, and social functions. This study aims to detect the multiannual lake area changes in this region during 2001-2009 using remote sensing, including lakes as small...

Full description

Bibliographic Details
Published in:Archaeology, Ethnology & Anthropology of Eurasia
Main Authors: Aliaga, Vanina S., Piccolo, María C., Perillo, Gerardo M. E.
Other Authors: CONICET, SMN, IGN, USGS, IAI CRN3038, US National Science Foundation (Grant GEO-1128040)
Format: Article in Journal/Newspaper
Language:English
Published: Universitat Politècnica de València 2021
Subjects:
Online Access:https://polipapers.upv.es/index.php/raet/article/view/14263
https://doi.org/10.4995/raet.2021.14263
id ftunpvalenciaojs:oai:ojs.upv.es:article/14263
record_format openpolar
institution Open Polar
collection Universitat Politècnica de València: PoliPapers
op_collection_id ftunpvalenciaojs
language English
topic Landsat
surface water dynamic
climate variability
Pampean lakes
Argentina
dinámica de aguas superficiales
variabilidad climática
lagunas Pampeanas
spellingShingle Landsat
surface water dynamic
climate variability
Pampean lakes
Argentina
dinámica de aguas superficiales
variabilidad climática
lagunas Pampeanas
Aliaga, Vanina S.
Piccolo, María C.
Perillo, Gerardo M. E.
Surface water extent dynamics from three periods of continuous Landsat time series; subregional differences across Argentine plains
topic_facet Landsat
surface water dynamic
climate variability
Pampean lakes
Argentina
dinámica de aguas superficiales
variabilidad climática
lagunas Pampeanas
description The Pampean region in Argentina is an extensive plain characterized by abundant shallow lakes that fulfill many environmental, ecological, and social functions. This study aims to detect the multiannual lake area changes in this region during 2001-2009 using remote sensing, including lakes as small as ≥10,000 m2 or 1 ha. Landsat scenes of the wet (2008-2009), normal (2006), and dry (2008-2009) seasons were obtained, and using remote sensing techniques, the number and area of shallow lakes were calculated. The spatiotemporal variation of shallow lakes was studied in different climate periods in eight singular subregions. Spatial associations between annual precipitation and lake number and area were analyzed through the development of a Geographic Information System (GIS) at a subregional scale. During the study period the total lake area in the Pampean region decreased by 5257.39 km2 (62 %), but each subregion showed different responses to climatic events. In seven of them, the differences between climate periods prove to be statistically significant (P0.01). The relationship between precipitation and lake number and area revealed the domain of positive association. We conclude that climate factors play a dominant role in lake changes across the Pampean plains. However, other factors such as origin, topographic and edaphic characteristics intensify or mitigate changes in surface hydrology. La Región Pampeana en Argentina es una extensa planicie caracterizada por abundantes lagunas que cumplen numerosas funciones ambientales, ecológicas y sociales. Este estudio tiene como objetivo detectar los cambios plurianuales del área lagunar en esta región durante el período 2001-2009 utilizando la teledetección, incluidos lagos tan pequeños como ≥ 10.000 m2 o 1 ha. Se obtuvieron escenas Landsat de las estaciones húmeda (2008-2009), normal (2006) y seca (2008-2009) y, mediante técnicas de teledetección, se calculó el número y el área de las lagunas. Se estudió su variación espacio-temporal en diferentes períodos climáticos en ocho subregiones singulares. Se analizaron las correlaciones espaciales entre la precipitación anual y el número y el área de los lagos mediante el desarrollo de un Sistema de Información Geográfica (SIG). Durante el período de estudio el área total de lagos en la región pampeana disminuyó en 5.257,39 km2 (62 %), pero cada subregión mostró diferentes respuestas a los eventos climáticos. En siete de ellos, las diferencias entre periodos climáticos resultan estadísticamente significativas (P0,01). La relación entre la precipitación con el número y área de las lagunas reveló el dominio de asociaciones positivas. Si bien el clima juega un papel dominante en los cambios en las lagunas de planicie, otros factores, como el origen, las características topográficas y edáficas, intensifican o mitigan los cambios en la hidrología superficial.
author2 CONICET
SMN
IGN
USGS
IAI CRN3038
US National Science Foundation (Grant GEO-1128040)
format Article in Journal/Newspaper
author Aliaga, Vanina S.
Piccolo, María C.
Perillo, Gerardo M. E.
author_facet Aliaga, Vanina S.
Piccolo, María C.
Perillo, Gerardo M. E.
author_sort Aliaga, Vanina S.
title Surface water extent dynamics from three periods of continuous Landsat time series; subregional differences across Argentine plains
title_short Surface water extent dynamics from three periods of continuous Landsat time series; subregional differences across Argentine plains
title_full Surface water extent dynamics from three periods of continuous Landsat time series; subregional differences across Argentine plains
title_fullStr Surface water extent dynamics from three periods of continuous Landsat time series; subregional differences across Argentine plains
title_full_unstemmed Surface water extent dynamics from three periods of continuous Landsat time series; subregional differences across Argentine plains
title_sort surface water extent dynamics from three periods of continuous landsat time series; subregional differences across argentine plains
publisher Universitat Politècnica de València
publishDate 2021
url https://polipapers.upv.es/index.php/raet/article/view/14263
https://doi.org/10.4995/raet.2021.14263
geographic Argentina
Argentine
geographic_facet Argentina
Argentine
genre Arctic
genre_facet Arctic
op_source Revista de Teledetección; Núm. 58 (2021); 131-145
1988-8740
1133-0953
op_relation https://polipapers.upv.es/index.php/raet/article/view/14263/14161
https://polipapers.upv.es/index.php/raet/article/downloadSuppFile/14263/11559
Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37(S1), 1237-1247. https://doi.org/10.1002/joc.5079
Aliaga, V.S., Ferrelli, F., Alberdi-Algarañaz, E.D., Bohn, V.Y. Piccolo, M.C. 2016. Distribution and variability of precipitation in the Pampean Region, Argentina. Cuadernos de Investigación Geográfica, 42(1), 261-280. https://doi.org/10.18172/cig.2867
Brendel, A.S. 2020. Estudio integral de los recursos hídricos y las coberturas del suelo de la cuenca media y baja del Río Sauce Grande (Argentina). (Tesis de Doctor en Geografía). Universidad Nacional del Sur, Bahía Blanca, Argentina. https://doi.org/10.19137/ huellas-2020-2425
Bohn, V.Y., Delgado, A.L., Piccolo, M.C. Perillo, G.M. 2016. Assessment of climate variability and land use effect on shallow lakes in temperate plains of Argentina. Environmental Earth Sciences, 75(9), 818. https://doi.org/10.1007/s12665-016-5569-6
Canziani, G., Castets, F., Maestri, M.L., Ferrati, R. 2019. Uso de imágenes satelitales para el estudio de las lagunas pampeanas. El caso de La Barrancosa. Destino: La Barrancosa. Una invitación a conocer lagunas pampeanas, 77.
Carmona, F., Rivas, R., Thomas, L. Marino, B. 2011. Spectral characterization of the estuary of the Quequén Grande River through Landsat images. In Raúl Rivas, Facundo Carmona and Dora Ocampo (Eds). Teledetección: Recientes aplicaciones en la Región Pampeana. Tandil, Buenos Aires. 11-29.
Deng, X., Xu, Y., Han, L., Song, S., Xu, G., & Xiang, J. 2018. Spatial-temporal changes in the longitudinal functional connectivity of river systems in the Taihu Plain, China. Journal of Hydrology, 566, 846-859. https://doi.org/10.1016/j.jhydrol.2018.09.060
Gerten D., Adrian R. 2000. Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol. Oceanogr., 45, 1058–1066. https://doi.org/10.4319/lo.2000.45.5.1058
Gerten D., Adrian R. 2001. Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol. Oceanogr., 46, 448–455. https://doi.org/10.4319/lo.2001.46.2.0448
Geraldi, A., Piccolo, M.C. Perillo, G.M.E. 2011. The role of the Buenos Aires shallow lakes in the Pampean land scape. Ciencia Hoy, 22.
Hein, C.L., Öhlund, G., Englund, G. 2012. Future distribution of Arctic char Salvelinus alpinus in Sweden under climate change: effects of temperature, lake size and species interactions. Ambio, 41(3), 303- 312. https://doi.org/10.1007/s13280-012-0308-z
Hu, Z.J., Wang, L.L., Tang, H.W., Qi, X.M. 2017. Prediction of the future flood severity in plain river network region based on numerical model: A case study. Journal of Hydrodynamics, 29(4), 586-595. https://doi.org/10.1016/S1001-6058(16)60771-0
Instituto Geográfico Nacional de la República Argentina. 2013. http://www.ign.gob.ar Jones, B.M., Grosse, G.D.A.C., Arp, C.D.,
Jones, M.C., Anthony, K.W., Romanovsky, V.E. 2011. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences, 116(G2). https://doi.org/10.1029/2011JG001666
Karlsson, J.M., Lyon, S.W., Destouni, G. 2014. Temporal behavior of lake size-distribution in a thawing permafrost landscape in northwestern Siberia. Remote sensing, 6(1), 621-636. https://doi.org/10.3390/rs6010621
Kling, G.W., Kipphut, G.W., Miller, M.M., O’Brien, W.J. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology, 43(3), 477–497. https://doi.org/10.1046/j.1365-2427.2000.00515.x
Kumar, S., Sarkar, A., Thakur, S.K., Shekhar, S. 2017. Hydrogeological characterization of aquifer in palla flood plain of Delhi using integrated approach. Journal of the Geological Society of India, 90(4), 459- 466. https://doi.org/10.1007/s12594-017-0739-z
Maestri, M.L., Castets, F., Bayala, M.I., Canziani, G. 2019. Análisis comparativo de cinco métodos de procesamiento para calcular el área de lagunas pampeanas a partir de imágenes satelitales Landsat. Biología Acuática, (33), 3. https://doi. org/10.24215/16684869e003
McDonald, C.P., Rover, J.A., Stets, E.G., Striegl, R.G. 2012. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnology and Oceanography, 57(2), 597–606. https://doi.org/10.4319/lo.2012.57.2.0597
Mohsen, A., Elshemy, M., Zeidan, B.A. 2018. Change detection for Lake Burullus, Egypt using remote sensing and GIS approaches. Environmental Science and Pollution Research, 25(31), 30763-30771. https://doi.org/10.1007/s11356-016-8167-y
Olthof, I., Fraser, R.H., Schmitt, C. 2015. Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sensing of Environment, 168, 194-204. https://doi.org/10.1016/j.rse.2015.07.001
Pisano, M.F., D’Amico, G., Ramos, N., Pommarés, N., Fucks, E. 2020. Factors that control the seasonal dynamics of the shallow lakes in the Pampean region, Buenos Aires, Argentina. Journal of South American Earth Sciences, 98, 102468. https://doi.org/10.1016/j.jsames.2019.102468
Pricope, N. G. 2013. Variable-source flood pulsing in a semi-arid transboundary watershed: The Chobe River, Botswana and Namibia. Environmental Monitoring and Assessment, 185, 1883–1906. https://doi.org/10.1007/s10661-012-2675-0
Quirós, R., Rennella, A.M., Boveri, M.A., Rosso, J.J., Sosnovsky, A. 2002. Factors that affect the structure and functioning of the Pampean shallow lakes. Ecología austral, 12(2), 175-185.
Roach, J.K., Griffith, B., Verbyla, D. 2013. Landscape influences on climate-related lake shrinkage at high latitudes. Global change biology, 19(7), 2276-2284. https://doi.org/10.1111/gcb.12196
Rover, J., Ji, L., Wylie, B.K., Tieszen, L.L. 2012. Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data. Remote Sensing Letters, 3(7), 595-604. https://doi.org/10.1080/01431161.2011.643507
Schroeder, T., Cohen, W., Song, C., Canty, M.J. Yang, Z. 2006. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sensing of Environment. 103(1),16-26. https://doi.org/10.1016/j.rse.2006.03.008
Solana, M.X., Londoño, O.M.Q., Romanelli, A., Donna, F., Martínez, D.E., Weinzettel, P. 2021. Connectivity of temperate shallow lakes to groundwater in the Pampean Plain, Argentina: A remote sensing and multi-tracer approach. Groundwater for Sustainable Development, 13, 100556. https://doi.org/10.1016/j.gsd.2021.100556
Subsecretaria de Recursos Hídricos e Instituto Nacional del Agua. 2002. Atlas digital de los Recursos Hídricos de la República Argentina. Subsecretaría de Recursos Hídricos de la Nación. Buenos Aires, Argentina.
Tulbure, M.G., Broich, M., Stehman, S.K., Kommareddy, A. 2016. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at sub continental scale in a semiarid region. Remote Sensing of Environment, 178, 142-157. https://doi.org/10.1016/j.rse.2016.02.034
Tricart, J.L. 1973. Geomorfología de la Pampa Deprimida. INTA, Buenos Aires.
Verpoorter, C., Kutser, T., Seekell, D.A., Tranvik, L.J. 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396-6402. https://doi. org/10.1002/2014GL060641
Vincent, W.F., Laurion, I., Pienitz, R., Walter Anthony, K.M. 2013. Climate impacts on Arctic lake ecosystems. Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, 27-42. https://doi.org/10.1002/9781118470596.ch2
Winslow, L.A., Read, J.S., Hanson, P.C., Stanley, E.H. 2015. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes. Inland Waters, 5(1), 7-14. https://doi.org/10.5268/IW-5.1.740
Zhang, G., Yao, T., Xie, H., Zhang, K., Zhu, F. 2014. Lakes state and abundance across the Tibetan Plateau. Chinese Science Bulletin, 59(24), 3010- 3021. https://doi.org/10.1007/s11434-014-0258-x
Zhang, G., Yao, T., Piao, S., Bolch, T., Xie, H., Chen, D., Yi, S. 2017. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophysical Research Letters, 44(1), 252-260. https://doi:10.1002/2016GL072033
Zhang, G., Yao, T., Chen, W., Zheng, G., Shum, C.K., Yang, K., O'Reilly, C.M. 2019. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes. Remote sensing of environment, 221, 386-404. https://doi.org/10.1016/j.rse.2018.11.038
Zunino, J., Ferrelli, F., Píccolo, M.C. 2019. Cambios morfometricos en una Laguna Pampeana (Argentina) como consecuencia de la variabilidad pluviométrica (1960-2015) y sus posibles efectos sobre la comunidad ictica. Geociências (São Paulo), 37(4), 835-847. https://doi.org/10.5016/geociencias.v37i4.11980
https://polipapers.upv.es/index.php/raet/article/view/14263
doi:10.4995/raet.2021.14263
op_rights Copyright (c) 2021 Vanina Aliaga, Maria Cintia Piccolo, Gerardo M.E. Perillo
http://creativecommons.org/licenses/by-nc-sa/4.0
op_rightsnorm CC-BY-NC-SA
op_doi https://doi.org/10.4995/raet.2021.14263
https://doi.org/10.1002/joc.5079
https://doi.org/10.18172/cig.2867
https://doi.org/10.1007/s12665-016-5569-6
https://doi.org/10.4319/lo.2000.45.5.1058
https://doi.org/10.4319/lo.2001.46.2.0448
https://do
container_title Archaeology, Ethnology & Anthropology of Eurasia
container_volume 49
container_issue 1
container_start_page 116
op_container_end_page 125
_version_ 1766302546970804224
spelling ftunpvalenciaojs:oai:ojs.upv.es:article/14263 2023-05-15T14:28:22+02:00 Surface water extent dynamics from three periods of continuous Landsat time series; subregional differences across Argentine plains Dinámica de aguas superficiales de tres períodos continuos de Landsat; diferencias subregionales en llanuras argentinas Aliaga, Vanina S. Piccolo, María C. Perillo, Gerardo M. E. CONICET SMN IGN USGS IAI CRN3038 US National Science Foundation (Grant GEO-1128040) 2021-07-21 application/pdf https://polipapers.upv.es/index.php/raet/article/view/14263 https://doi.org/10.4995/raet.2021.14263 eng eng Universitat Politècnica de València https://polipapers.upv.es/index.php/raet/article/view/14263/14161 https://polipapers.upv.es/index.php/raet/article/downloadSuppFile/14263/11559 Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37(S1), 1237-1247. https://doi.org/10.1002/joc.5079 Aliaga, V.S., Ferrelli, F., Alberdi-Algarañaz, E.D., Bohn, V.Y. Piccolo, M.C. 2016. Distribution and variability of precipitation in the Pampean Region, Argentina. Cuadernos de Investigación Geográfica, 42(1), 261-280. https://doi.org/10.18172/cig.2867 Brendel, A.S. 2020. Estudio integral de los recursos hídricos y las coberturas del suelo de la cuenca media y baja del Río Sauce Grande (Argentina). (Tesis de Doctor en Geografía). Universidad Nacional del Sur, Bahía Blanca, Argentina. https://doi.org/10.19137/ huellas-2020-2425 Bohn, V.Y., Delgado, A.L., Piccolo, M.C. Perillo, G.M. 2016. Assessment of climate variability and land use effect on shallow lakes in temperate plains of Argentina. Environmental Earth Sciences, 75(9), 818. https://doi.org/10.1007/s12665-016-5569-6 Canziani, G., Castets, F., Maestri, M.L., Ferrati, R. 2019. Uso de imágenes satelitales para el estudio de las lagunas pampeanas. El caso de La Barrancosa. Destino: La Barrancosa. Una invitación a conocer lagunas pampeanas, 77. Carmona, F., Rivas, R., Thomas, L. Marino, B. 2011. Spectral characterization of the estuary of the Quequén Grande River through Landsat images. In Raúl Rivas, Facundo Carmona and Dora Ocampo (Eds). Teledetección: Recientes aplicaciones en la Región Pampeana. Tandil, Buenos Aires. 11-29. Deng, X., Xu, Y., Han, L., Song, S., Xu, G., & Xiang, J. 2018. Spatial-temporal changes in the longitudinal functional connectivity of river systems in the Taihu Plain, China. Journal of Hydrology, 566, 846-859. https://doi.org/10.1016/j.jhydrol.2018.09.060 Gerten D., Adrian R. 2000. Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol. Oceanogr., 45, 1058–1066. https://doi.org/10.4319/lo.2000.45.5.1058 Gerten D., Adrian R. 2001. Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol. Oceanogr., 46, 448–455. https://doi.org/10.4319/lo.2001.46.2.0448 Geraldi, A., Piccolo, M.C. Perillo, G.M.E. 2011. The role of the Buenos Aires shallow lakes in the Pampean land scape. Ciencia Hoy, 22. Hein, C.L., Öhlund, G., Englund, G. 2012. Future distribution of Arctic char Salvelinus alpinus in Sweden under climate change: effects of temperature, lake size and species interactions. Ambio, 41(3), 303- 312. https://doi.org/10.1007/s13280-012-0308-z Hu, Z.J., Wang, L.L., Tang, H.W., Qi, X.M. 2017. Prediction of the future flood severity in plain river network region based on numerical model: A case study. Journal of Hydrodynamics, 29(4), 586-595. https://doi.org/10.1016/S1001-6058(16)60771-0 Instituto Geográfico Nacional de la República Argentina. 2013. http://www.ign.gob.ar Jones, B.M., Grosse, G.D.A.C., Arp, C.D., Jones, M.C., Anthony, K.W., Romanovsky, V.E. 2011. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences, 116(G2). https://doi.org/10.1029/2011JG001666 Karlsson, J.M., Lyon, S.W., Destouni, G. 2014. Temporal behavior of lake size-distribution in a thawing permafrost landscape in northwestern Siberia. Remote sensing, 6(1), 621-636. https://doi.org/10.3390/rs6010621 Kling, G.W., Kipphut, G.W., Miller, M.M., O’Brien, W.J. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology, 43(3), 477–497. https://doi.org/10.1046/j.1365-2427.2000.00515.x Kumar, S., Sarkar, A., Thakur, S.K., Shekhar, S. 2017. Hydrogeological characterization of aquifer in palla flood plain of Delhi using integrated approach. Journal of the Geological Society of India, 90(4), 459- 466. https://doi.org/10.1007/s12594-017-0739-z Maestri, M.L., Castets, F., Bayala, M.I., Canziani, G. 2019. Análisis comparativo de cinco métodos de procesamiento para calcular el área de lagunas pampeanas a partir de imágenes satelitales Landsat. Biología Acuática, (33), 3. https://doi. org/10.24215/16684869e003 McDonald, C.P., Rover, J.A., Stets, E.G., Striegl, R.G. 2012. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnology and Oceanography, 57(2), 597–606. https://doi.org/10.4319/lo.2012.57.2.0597 Mohsen, A., Elshemy, M., Zeidan, B.A. 2018. Change detection for Lake Burullus, Egypt using remote sensing and GIS approaches. Environmental Science and Pollution Research, 25(31), 30763-30771. https://doi.org/10.1007/s11356-016-8167-y Olthof, I., Fraser, R.H., Schmitt, C. 2015. Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sensing of Environment, 168, 194-204. https://doi.org/10.1016/j.rse.2015.07.001 Pisano, M.F., D’Amico, G., Ramos, N., Pommarés, N., Fucks, E. 2020. Factors that control the seasonal dynamics of the shallow lakes in the Pampean region, Buenos Aires, Argentina. Journal of South American Earth Sciences, 98, 102468. https://doi.org/10.1016/j.jsames.2019.102468 Pricope, N. G. 2013. Variable-source flood pulsing in a semi-arid transboundary watershed: The Chobe River, Botswana and Namibia. Environmental Monitoring and Assessment, 185, 1883–1906. https://doi.org/10.1007/s10661-012-2675-0 Quirós, R., Rennella, A.M., Boveri, M.A., Rosso, J.J., Sosnovsky, A. 2002. Factors that affect the structure and functioning of the Pampean shallow lakes. Ecología austral, 12(2), 175-185. Roach, J.K., Griffith, B., Verbyla, D. 2013. Landscape influences on climate-related lake shrinkage at high latitudes. Global change biology, 19(7), 2276-2284. https://doi.org/10.1111/gcb.12196 Rover, J., Ji, L., Wylie, B.K., Tieszen, L.L. 2012. Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data. Remote Sensing Letters, 3(7), 595-604. https://doi.org/10.1080/01431161.2011.643507 Schroeder, T., Cohen, W., Song, C., Canty, M.J. Yang, Z. 2006. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sensing of Environment. 103(1),16-26. https://doi.org/10.1016/j.rse.2006.03.008 Solana, M.X., Londoño, O.M.Q., Romanelli, A., Donna, F., Martínez, D.E., Weinzettel, P. 2021. Connectivity of temperate shallow lakes to groundwater in the Pampean Plain, Argentina: A remote sensing and multi-tracer approach. Groundwater for Sustainable Development, 13, 100556. https://doi.org/10.1016/j.gsd.2021.100556 Subsecretaria de Recursos Hídricos e Instituto Nacional del Agua. 2002. Atlas digital de los Recursos Hídricos de la República Argentina. Subsecretaría de Recursos Hídricos de la Nación. Buenos Aires, Argentina. Tulbure, M.G., Broich, M., Stehman, S.K., Kommareddy, A. 2016. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at sub continental scale in a semiarid region. Remote Sensing of Environment, 178, 142-157. https://doi.org/10.1016/j.rse.2016.02.034 Tricart, J.L. 1973. Geomorfología de la Pampa Deprimida. INTA, Buenos Aires. Verpoorter, C., Kutser, T., Seekell, D.A., Tranvik, L.J. 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396-6402. https://doi. org/10.1002/2014GL060641 Vincent, W.F., Laurion, I., Pienitz, R., Walter Anthony, K.M. 2013. Climate impacts on Arctic lake ecosystems. Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, 27-42. https://doi.org/10.1002/9781118470596.ch2 Winslow, L.A., Read, J.S., Hanson, P.C., Stanley, E.H. 2015. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes. Inland Waters, 5(1), 7-14. https://doi.org/10.5268/IW-5.1.740 Zhang, G., Yao, T., Xie, H., Zhang, K., Zhu, F. 2014. Lakes state and abundance across the Tibetan Plateau. Chinese Science Bulletin, 59(24), 3010- 3021. https://doi.org/10.1007/s11434-014-0258-x Zhang, G., Yao, T., Piao, S., Bolch, T., Xie, H., Chen, D., Yi, S. 2017. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophysical Research Letters, 44(1), 252-260. https://doi:10.1002/2016GL072033 Zhang, G., Yao, T., Chen, W., Zheng, G., Shum, C.K., Yang, K., O'Reilly, C.M. 2019. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes. Remote sensing of environment, 221, 386-404. https://doi.org/10.1016/j.rse.2018.11.038 Zunino, J., Ferrelli, F., Píccolo, M.C. 2019. Cambios morfometricos en una Laguna Pampeana (Argentina) como consecuencia de la variabilidad pluviométrica (1960-2015) y sus posibles efectos sobre la comunidad ictica. Geociências (São Paulo), 37(4), 835-847. https://doi.org/10.5016/geociencias.v37i4.11980 https://polipapers.upv.es/index.php/raet/article/view/14263 doi:10.4995/raet.2021.14263 Copyright (c) 2021 Vanina Aliaga, Maria Cintia Piccolo, Gerardo M.E. Perillo http://creativecommons.org/licenses/by-nc-sa/4.0 CC-BY-NC-SA Revista de Teledetección; Núm. 58 (2021); 131-145 1988-8740 1133-0953 Landsat surface water dynamic climate variability Pampean lakes Argentina dinámica de aguas superficiales variabilidad climática lagunas Pampeanas info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article 2021 ftunpvalenciaojs https://doi.org/10.4995/raet.2021.14263 https://doi.org/10.1002/joc.5079 https://doi.org/10.18172/cig.2867 https://doi.org/10.1007/s12665-016-5569-6 https://doi.org/10.4319/lo.2000.45.5.1058 https://doi.org/10.4319/lo.2001.46.2.0448 https://do 2022-01-07T06:51:06Z The Pampean region in Argentina is an extensive plain characterized by abundant shallow lakes that fulfill many environmental, ecological, and social functions. This study aims to detect the multiannual lake area changes in this region during 2001-2009 using remote sensing, including lakes as small as ≥10,000 m2 or 1 ha. Landsat scenes of the wet (2008-2009), normal (2006), and dry (2008-2009) seasons were obtained, and using remote sensing techniques, the number and area of shallow lakes were calculated. The spatiotemporal variation of shallow lakes was studied in different climate periods in eight singular subregions. Spatial associations between annual precipitation and lake number and area were analyzed through the development of a Geographic Information System (GIS) at a subregional scale. During the study period the total lake area in the Pampean region decreased by 5257.39 km2 (62 %), but each subregion showed different responses to climatic events. In seven of them, the differences between climate periods prove to be statistically significant (P0.01). The relationship between precipitation and lake number and area revealed the domain of positive association. We conclude that climate factors play a dominant role in lake changes across the Pampean plains. However, other factors such as origin, topographic and edaphic characteristics intensify or mitigate changes in surface hydrology. La Región Pampeana en Argentina es una extensa planicie caracterizada por abundantes lagunas que cumplen numerosas funciones ambientales, ecológicas y sociales. Este estudio tiene como objetivo detectar los cambios plurianuales del área lagunar en esta región durante el período 2001-2009 utilizando la teledetección, incluidos lagos tan pequeños como ≥ 10.000 m2 o 1 ha. Se obtuvieron escenas Landsat de las estaciones húmeda (2008-2009), normal (2006) y seca (2008-2009) y, mediante técnicas de teledetección, se calculó el número y el área de las lagunas. Se estudió su variación espacio-temporal en diferentes períodos climáticos en ocho subregiones singulares. Se analizaron las correlaciones espaciales entre la precipitación anual y el número y el área de los lagos mediante el desarrollo de un Sistema de Información Geográfica (SIG). Durante el período de estudio el área total de lagos en la región pampeana disminuyó en 5.257,39 km2 (62 %), pero cada subregión mostró diferentes respuestas a los eventos climáticos. En siete de ellos, las diferencias entre periodos climáticos resultan estadísticamente significativas (P0,01). La relación entre la precipitación con el número y área de las lagunas reveló el dominio de asociaciones positivas. Si bien el clima juega un papel dominante en los cambios en las lagunas de planicie, otros factores, como el origen, las características topográficas y edáficas, intensifican o mitigan los cambios en la hidrología superficial. Article in Journal/Newspaper Arctic Universitat Politècnica de València: PoliPapers Argentina Argentine Archaeology, Ethnology & Anthropology of Eurasia 49 1 116 125