Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK

The vertical deformation monitoring of a suspension bridge tower is of paramount importance to maintain the operational safety since nearly all forces are eventually transferred as the vertical stress on the tower. This paper analyses the components affecting the vertical deformation and attempts to...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Chen, Qusen, Jiang, Weiping, Meng, Xiaolin, Jiang, Peng, Wang, Kaihua, Xie, Yilin, Ye, Jun
Format: Article in Journal/Newspaper
Language:English
Published: MDPI 2018
Subjects:
Online Access:http://eprints.nottingham.ac.uk/50202/
https://eprints.nottingham.ac.uk/50202/2/remotesensing-10-00364.pdf
http://www.mdpi.com/2072-4292/10/3/364
https://doi.org/10.3390/rs10030364
id ftunottingham:oai:eprints.nottingham.ac.uk:50202
record_format openpolar
spelling ftunottingham:oai:eprints.nottingham.ac.uk:50202 2023-09-05T13:21:42+02:00 Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK Chen, Qusen Jiang, Weiping Meng, Xiaolin Jiang, Peng Wang, Kaihua Xie, Yilin Ye, Jun 2018-02-26 application/pdf http://eprints.nottingham.ac.uk/50202/ https://eprints.nottingham.ac.uk/50202/2/remotesensing-10-00364.pdf http://www.mdpi.com/2072-4292/10/3/364 https://doi.org/10.3390/rs10030364 en eng MDPI https://eprints.nottingham.ac.uk/50202/2/remotesensing-10-00364.pdf Chen, Qusen and Jiang, Weiping and Meng, Xiaolin and Jiang, Peng and Wang, Kaihua and Xie, Yilin and Ye, Jun (2018) Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK. Remote Sensing, 10 (3). 364/1-364/19. ISSN 2072-4292 doi:10.3390/rs10030364 cc_by Article PeerReviewed 2018 ftunottingham https://doi.org/10.3390/rs10030364 2023-08-14T17:43:36Z The vertical deformation monitoring of a suspension bridge tower is of paramount importance to maintain the operational safety since nearly all forces are eventually transferred as the vertical stress on the tower. This paper analyses the components affecting the vertical deformation and attempts to reveal its deformation mechanism. Firstly, we designed a strategy for high-precision GNSS data processing aiming at facilitating deformation extraction and analysis. Then, 33 months of vertical deformation time series of the southern tower of the Forth Road Bridge (FRB) in the UK were processed, and the accurate subsidence and the parameters of seasonal signals were estimated based on a classic function model that has been widely studied to analyse GNSS coordinate time series. We found that the subsidence rate is about 4.7 mm/year, with 0.1 mm uncertainty. Meanwhile, a 15-month meteorological dataset was utilised with a thermal expansion model (TEM) to explain the effects of seasonal signals on tower deformation. The amplitude of the annual signals correlated quite well that obtained by the TEM, with the consistency reaching 98.9%, demonstrating that the thermal effect contributes significantly to the annual signals. The amplitude of daily signals displays poor consistency with the ambient temperature data. However, the phase variation tendencies between the daily signals of the vertical deformation and the ambient temperature are highly consistent after February 2016. Finally, the potential contribution of the North Atlantic Drift (NAD) to the characteristics of annual and daily signals is discussed because of the special geographical location of the FRB. Meanwhile, this paper emphasizes the importance of collecting more detailed meteorological and other loading data for the investigation of the vertical deformation mechanism of the bridge towers over time with the support of GNSS. Article in Journal/Newspaper North Atlantic The University of Nottingham: Nottingham ePrints Remote Sensing 10 3 364
institution Open Polar
collection The University of Nottingham: Nottingham ePrints
op_collection_id ftunottingham
language English
description The vertical deformation monitoring of a suspension bridge tower is of paramount importance to maintain the operational safety since nearly all forces are eventually transferred as the vertical stress on the tower. This paper analyses the components affecting the vertical deformation and attempts to reveal its deformation mechanism. Firstly, we designed a strategy for high-precision GNSS data processing aiming at facilitating deformation extraction and analysis. Then, 33 months of vertical deformation time series of the southern tower of the Forth Road Bridge (FRB) in the UK were processed, and the accurate subsidence and the parameters of seasonal signals were estimated based on a classic function model that has been widely studied to analyse GNSS coordinate time series. We found that the subsidence rate is about 4.7 mm/year, with 0.1 mm uncertainty. Meanwhile, a 15-month meteorological dataset was utilised with a thermal expansion model (TEM) to explain the effects of seasonal signals on tower deformation. The amplitude of the annual signals correlated quite well that obtained by the TEM, with the consistency reaching 98.9%, demonstrating that the thermal effect contributes significantly to the annual signals. The amplitude of daily signals displays poor consistency with the ambient temperature data. However, the phase variation tendencies between the daily signals of the vertical deformation and the ambient temperature are highly consistent after February 2016. Finally, the potential contribution of the North Atlantic Drift (NAD) to the characteristics of annual and daily signals is discussed because of the special geographical location of the FRB. Meanwhile, this paper emphasizes the importance of collecting more detailed meteorological and other loading data for the investigation of the vertical deformation mechanism of the bridge towers over time with the support of GNSS.
format Article in Journal/Newspaper
author Chen, Qusen
Jiang, Weiping
Meng, Xiaolin
Jiang, Peng
Wang, Kaihua
Xie, Yilin
Ye, Jun
spellingShingle Chen, Qusen
Jiang, Weiping
Meng, Xiaolin
Jiang, Peng
Wang, Kaihua
Xie, Yilin
Ye, Jun
Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK
author_facet Chen, Qusen
Jiang, Weiping
Meng, Xiaolin
Jiang, Peng
Wang, Kaihua
Xie, Yilin
Ye, Jun
author_sort Chen, Qusen
title Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK
title_short Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK
title_full Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK
title_fullStr Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK
title_full_unstemmed Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK
title_sort vertical deformation monitoring of the suspension bridge tower using gnss: a case study of the forth road bridge in the uk
publisher MDPI
publishDate 2018
url http://eprints.nottingham.ac.uk/50202/
https://eprints.nottingham.ac.uk/50202/2/remotesensing-10-00364.pdf
http://www.mdpi.com/2072-4292/10/3/364
https://doi.org/10.3390/rs10030364
genre North Atlantic
genre_facet North Atlantic
op_relation https://eprints.nottingham.ac.uk/50202/2/remotesensing-10-00364.pdf
Chen, Qusen and Jiang, Weiping and Meng, Xiaolin and Jiang, Peng and Wang, Kaihua and Xie, Yilin and Ye, Jun (2018) Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK. Remote Sensing, 10 (3). 364/1-364/19. ISSN 2072-4292
doi:10.3390/rs10030364
op_rights cc_by
op_doi https://doi.org/10.3390/rs10030364
container_title Remote Sensing
container_volume 10
container_issue 3
container_start_page 364
_version_ 1776202287372304384