Study of Mobile Robot Operations Related to Lunar Exploration

Mobile robots extend the reach of exploration in environments unsuitable, or unreachable, by humans. Far-reaching environments, such as the south lunar pole, exhibit lighting conditions that are challenging for optical imagery required for mobile robot navigation. Terrain conditions also impact the...

Full description

Bibliographic Details
Main Author: Cross, Matthew
Format: Text
Language:English
Published: Scholarship@Western 2016
Subjects:
Online Access:https://ir.lib.uwo.ca/etd/4331
https://ir.lib.uwo.ca/context/etd/article/6039/viewcontent/MCross_PhD_Thesis_Jan6.pdf
id ftunivwestonta:oai:ir.lib.uwo.ca:etd-6039
record_format openpolar
spelling ftunivwestonta:oai:ir.lib.uwo.ca:etd-6039 2023-10-01T03:59:30+02:00 Study of Mobile Robot Operations Related to Lunar Exploration Cross, Matthew 2016-12-16T08:00:00Z application/pdf https://ir.lib.uwo.ca/etd/4331 https://ir.lib.uwo.ca/context/etd/article/6039/viewcontent/MCross_PhD_Thesis_Jan6.pdf English eng Scholarship@Western https://ir.lib.uwo.ca/etd/4331 https://ir.lib.uwo.ca/context/etd/article/6039/viewcontent/MCross_PhD_Thesis_Jan6.pdf Electronic Thesis and Dissertation Repository Mobile Robots Tele-Operation Fitts' Law Terrain Classification Engineering Robotics text 2016 ftunivwestonta 2023-09-03T07:26:34Z Mobile robots extend the reach of exploration in environments unsuitable, or unreachable, by humans. Far-reaching environments, such as the south lunar pole, exhibit lighting conditions that are challenging for optical imagery required for mobile robot navigation. Terrain conditions also impact the operation of mobile robots; distinguishing terrain types prior to physical contact can improve hazard avoidance. This thesis presents the conclusions of a trade-off that uses the results from two studies related to operating mobile robots at the lunar south pole. The lunar south pole presents engineering design challenges for both tele-operation and lidar-based autonomous navigation in the context of a near-term, low-cost, short-duration lunar prospecting mission. The conclusion is that direct-drive tele-operation may result in improved science data return. The first study is on demonstrating lidar reflectance intensity, and near-infrared spectroscopy, can improve terrain classification over optical imagery alone. Two classification techniques, Naive Bayes and multi-class SVM, were compared for classification errors. Eight terrain types, including aggregate, loose sand and compacted sand, are classified using wavelet-transformed optical images, and statistical values of lidar reflectance intensity. The addition of lidar reflectance intensity was shown to reduce classification errors for both classifiers. Four types of aggregate material are classified using statistical values of spectral reflectance. The addition of spectral reflectance was shown to reduce classification errors for both classifiers. The second study is on human performance in tele-operating a mobile robot over time-delay and in lighting conditions analogous to the south lunar pole. Round-trip time delay between operator and mobile robot leads to an increase in time to turn the mobile robot around obstacles or corners as operators tend to implement a `wait and see' approach. A study on completion time for a cornering task through varying corridor ... Text South pole The University of Western Ontario: Scholarship@Western South Pole
institution Open Polar
collection The University of Western Ontario: Scholarship@Western
op_collection_id ftunivwestonta
language English
topic Mobile Robots
Tele-Operation
Fitts' Law
Terrain Classification
Engineering
Robotics
spellingShingle Mobile Robots
Tele-Operation
Fitts' Law
Terrain Classification
Engineering
Robotics
Cross, Matthew
Study of Mobile Robot Operations Related to Lunar Exploration
topic_facet Mobile Robots
Tele-Operation
Fitts' Law
Terrain Classification
Engineering
Robotics
description Mobile robots extend the reach of exploration in environments unsuitable, or unreachable, by humans. Far-reaching environments, such as the south lunar pole, exhibit lighting conditions that are challenging for optical imagery required for mobile robot navigation. Terrain conditions also impact the operation of mobile robots; distinguishing terrain types prior to physical contact can improve hazard avoidance. This thesis presents the conclusions of a trade-off that uses the results from two studies related to operating mobile robots at the lunar south pole. The lunar south pole presents engineering design challenges for both tele-operation and lidar-based autonomous navigation in the context of a near-term, low-cost, short-duration lunar prospecting mission. The conclusion is that direct-drive tele-operation may result in improved science data return. The first study is on demonstrating lidar reflectance intensity, and near-infrared spectroscopy, can improve terrain classification over optical imagery alone. Two classification techniques, Naive Bayes and multi-class SVM, were compared for classification errors. Eight terrain types, including aggregate, loose sand and compacted sand, are classified using wavelet-transformed optical images, and statistical values of lidar reflectance intensity. The addition of lidar reflectance intensity was shown to reduce classification errors for both classifiers. Four types of aggregate material are classified using statistical values of spectral reflectance. The addition of spectral reflectance was shown to reduce classification errors for both classifiers. The second study is on human performance in tele-operating a mobile robot over time-delay and in lighting conditions analogous to the south lunar pole. Round-trip time delay between operator and mobile robot leads to an increase in time to turn the mobile robot around obstacles or corners as operators tend to implement a `wait and see' approach. A study on completion time for a cornering task through varying corridor ...
format Text
author Cross, Matthew
author_facet Cross, Matthew
author_sort Cross, Matthew
title Study of Mobile Robot Operations Related to Lunar Exploration
title_short Study of Mobile Robot Operations Related to Lunar Exploration
title_full Study of Mobile Robot Operations Related to Lunar Exploration
title_fullStr Study of Mobile Robot Operations Related to Lunar Exploration
title_full_unstemmed Study of Mobile Robot Operations Related to Lunar Exploration
title_sort study of mobile robot operations related to lunar exploration
publisher Scholarship@Western
publishDate 2016
url https://ir.lib.uwo.ca/etd/4331
https://ir.lib.uwo.ca/context/etd/article/6039/viewcontent/MCross_PhD_Thesis_Jan6.pdf
geographic South Pole
geographic_facet South Pole
genre South pole
genre_facet South pole
op_source Electronic Thesis and Dissertation Repository
op_relation https://ir.lib.uwo.ca/etd/4331
https://ir.lib.uwo.ca/context/etd/article/6039/viewcontent/MCross_PhD_Thesis_Jan6.pdf
_version_ 1778533599181537280