Characterisation and Analysis of Catastrophic Landslides and Related Processes using Digital Topographic Data

This thesis represents a large body of work that seeks to describe, quantify, and simulate the behaviour of large rock slope failures (> 1 Mm³), in the form of landslides and rock avalanches, and their secondary processes, such as landslide-dammed lakes, utilizing remotely sensed data. Remotely s...

Full description

Bibliographic Details
Main Author: Delaney, Keith Brian
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of Waterloo 2014
Subjects:
Online Access:http://hdl.handle.net/10012/8633
Description
Summary:This thesis represents a large body of work that seeks to describe, quantify, and simulate the behaviour of large rock slope failures (> 1 Mm³), in the form of landslides and rock avalanches, and their secondary processes, such as landslide-dammed lakes, utilizing remotely sensed data. Remotely sensed data includes aerial photography, high resolution satellite imagery from various platforms (e.g. LANDSAT, ASTER, EO-1, SPOT), and digital topographic elevation models of the Earth’s surface (e.g. SRTM-3, ASTER GDEM2, LiDAR). This thesis focused on regions in northwest North America (British Columbia, Yukon Territory, and Alaska), and on regions in the Himalaya and Pamirs Mountain chains (Tajikistan, Afghanistan, Pakistan, Tibet, and India). These study regions are each highly dynamic landscapes, where the occurrence of rock slope failures per area is higher than non-mountainous regions, and these events are aiding to the shape and profile of the landscapes and surfaces found today. This thesis focuses on: 1) the ability to accurately calculate geometrics (e.g. areas, volumes, runouts, debris depths) for large scale landslides and their associated landslide dammed lakes (e.g. areas, volumes, outbursts), utilizing data from remotely sensed sources; 2) the attempt to successfully simulate the observed dynamics for both landslide emplacement and their resulting debris deposits (DAN-W, DAN3D), and possible outburst flood scenarios (FLO2D); and, 3) attempt to quantify the kinetic and specific energy involved in rock avalanches, and how these energetics relate to fragmentation, as well as the lateral spreading and thinning of debris sheets. The river valleys of the northwest Himalayas (Pakistan and India) and the adjacent Pamirs Mountains of Afghanistan and Tajikistan contain in excess of two hundred known rockslide deposits of unknown age that have interrupted surface drainage and previously dammed major rivers in the region in recent and prehistoric time. Some prehistoric rockslide dams in the northwest Himalayas ...