Development, Assessment and Application of Benthic Algal Biomonitoring Protocols for Canadian Waters

Stressors such as residential and industrial development and climate warming are escalating in North America, which increases stress to aquatic ecosystems. In the face of this, monitoring biologists must continually improve protocols for long-term monitoring programs in order to adequately character...

Full description

Bibliographic Details
Main Author: Thomas, Kathryn Elizabeth
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of Waterloo 2014
Subjects:
Online Access:http://hdl.handle.net/10012/8207
Description
Summary:Stressors such as residential and industrial development and climate warming are escalating in North America, which increases stress to aquatic ecosystems. In the face of this, monitoring biologists must continually improve protocols for long-term monitoring programs in order to adequately characterize changes in biological communities. To address this need, this thesis has developed, applied, and assessed benthic algal biomonitoring protocols in lakes and rivers. In the Muskoka-Haliburton area of Ontario, benthic algal protocols were developed to assess effects of differences in shoreline development. In the South Nahanni River watershed, Northwest Territories, benthic algal biomonitoring protocols were developed to assess effects of two mining companies on rivers in an otherwise pristine ecosystem. In the Muskoka-Haliburton area I developed and evaluated bioassessment protocols based on benthic algae growing in the littoral zone of lakes to track effects of shoreline development. To do this, I sampled a suite of study sites (n = 28 in 2006, n = 29 in 2007) spanning a gradient of shoreline development (e.g., intact forests, cottages, marinas). The protocols were modified from protocols developed for rivers (Biggs and Kilroy, 2000), and five levels of assessment were completed for each site that differed in the amount of time, resources and expertise required. Level 1 comprised visual assessments of benthic algal cover. Level 2 involved biomass estimates (ash-free dry mass and chlorophyll-a). Level 3 included coarse-level taxonomic enumeration of benthic algal community composition (i.e., to major algal classes). Level 4 included quantification of pigment concentrations using High-Performance Liquid Chromatography (HPLC). Level 5 involved high-taxonomic resolution enumeration of diatom community composition (to species and sub-species levels). Uni- and multivariate analyses were used to assess relations between shoreline development, water chemistry and benthic algal metrics. Results of this study showed that ...