Seasonal and Multi-year Variability of Ice Dynamics of South Croker Bay Glacier, Devon Ice Cap, Canadian Arctic from 2015 to 2021
The effects of climate change have already been observed across the globe, impacting weather, ecosystems, and society. These effects have been most pronounced in polar regions, which experience warming at a faster rate than other latitudes due to positive feedbacks resulting from reduced ice and sno...
Main Author: | |
---|---|
Format: | Master Thesis |
Language: | English |
Published: |
University of Waterloo
2023
|
Subjects: | |
Online Access: | http://hdl.handle.net/10012/19095 |
id |
ftunivwaterloo:oai:uwspace.uwaterloo.ca:10012/19095 |
---|---|
record_format |
openpolar |
spelling |
ftunivwaterloo:oai:uwspace.uwaterloo.ca:10012/19095 2023-05-15T13:34:04+02:00 Seasonal and Multi-year Variability of Ice Dynamics of South Croker Bay Glacier, Devon Ice Cap, Canadian Arctic from 2015 to 2021 Nikolic, Natalija 2023-01-17 http://hdl.handle.net/10012/19095 en eng University of Waterloo http://hdl.handle.net/10012/19095 ice dynamics glacier dynamics seasonality Canadian Arctic Devon Ice Cap South Croker Bay Master Thesis 2023 ftunivwaterloo 2023-01-21T23:57:35Z The effects of climate change have already been observed across the globe, impacting weather, ecosystems, and society. These effects have been most pronounced in polar regions, which experience warming at a faster rate than other latitudes due to positive feedbacks resulting from reduced ice and snow cover. Compared to the 1.1oC of warming around the globe since the 1980s, the Arctic has warmed by 3oC. Glaciers and ice caps are of particular concern as they have profound impacts on water resources, shipping and travel routes, and global sea level rise. As such, glacier dynamics play a key role in understanding effects on the global system. The Canadian High Arctic in particular has doubled in rates of mass loss since the 1990s, which is of great concern as it is the third largest contributor to global sea level rise after Antarctica and Greenland. While glacier flow within the region has been studied, some glaciers have been observed to not align with current understandings of dynamics. The subject of this study, South Croker Bay Glacier, located on Devon Ice Cap in Nunavut, Canada has exhibited velocity variability on oscillating temporal scales which do not align with surging, pulsing, or consistent acceleration explanations. The primary objective of this thesis was to create a dense record of velocities derived from TerraSAR-X imagery every 11 days from 2015 to 2021 to gain insight into seasonal and multi-annual velocity variability. As a result, a near-continuous velocity record of South Croker Bay Glacier has been created, highlighting a shift in velocities which occurred during the winter of 2018/19. The second objective was to explore the potential drivers of the observed velocity variability, which were hydrology, sea ice buttressing, and bed topography. Looking at the spatial propagation of acceleration and terminus position as well, it is concluded that the variability is not driven by surge- or pulse-type mechanisms. Instead, it is suggested that the driver of the observed variability on the glacier ... Master Thesis Antarc* Antarctica Arctic Climate change Croker Bay glacier glacier* Greenland Ice cap Nunavut Sea ice University of Waterloo, Canada: Institutional Repository Arctic Nunavut Canada Greenland Devon Ice Cap ENVELOPE(-82.499,-82.499,75.335,75.335) Croker ENVELOPE(-61.683,-61.683,-63.966,-63.966) Croker Bay ENVELOPE(-83.249,-83.249,74.702,74.702) |
institution |
Open Polar |
collection |
University of Waterloo, Canada: Institutional Repository |
op_collection_id |
ftunivwaterloo |
language |
English |
topic |
ice dynamics glacier dynamics seasonality Canadian Arctic Devon Ice Cap South Croker Bay |
spellingShingle |
ice dynamics glacier dynamics seasonality Canadian Arctic Devon Ice Cap South Croker Bay Nikolic, Natalija Seasonal and Multi-year Variability of Ice Dynamics of South Croker Bay Glacier, Devon Ice Cap, Canadian Arctic from 2015 to 2021 |
topic_facet |
ice dynamics glacier dynamics seasonality Canadian Arctic Devon Ice Cap South Croker Bay |
description |
The effects of climate change have already been observed across the globe, impacting weather, ecosystems, and society. These effects have been most pronounced in polar regions, which experience warming at a faster rate than other latitudes due to positive feedbacks resulting from reduced ice and snow cover. Compared to the 1.1oC of warming around the globe since the 1980s, the Arctic has warmed by 3oC. Glaciers and ice caps are of particular concern as they have profound impacts on water resources, shipping and travel routes, and global sea level rise. As such, glacier dynamics play a key role in understanding effects on the global system. The Canadian High Arctic in particular has doubled in rates of mass loss since the 1990s, which is of great concern as it is the third largest contributor to global sea level rise after Antarctica and Greenland. While glacier flow within the region has been studied, some glaciers have been observed to not align with current understandings of dynamics. The subject of this study, South Croker Bay Glacier, located on Devon Ice Cap in Nunavut, Canada has exhibited velocity variability on oscillating temporal scales which do not align with surging, pulsing, or consistent acceleration explanations. The primary objective of this thesis was to create a dense record of velocities derived from TerraSAR-X imagery every 11 days from 2015 to 2021 to gain insight into seasonal and multi-annual velocity variability. As a result, a near-continuous velocity record of South Croker Bay Glacier has been created, highlighting a shift in velocities which occurred during the winter of 2018/19. The second objective was to explore the potential drivers of the observed velocity variability, which were hydrology, sea ice buttressing, and bed topography. Looking at the spatial propagation of acceleration and terminus position as well, it is concluded that the variability is not driven by surge- or pulse-type mechanisms. Instead, it is suggested that the driver of the observed variability on the glacier ... |
format |
Master Thesis |
author |
Nikolic, Natalija |
author_facet |
Nikolic, Natalija |
author_sort |
Nikolic, Natalija |
title |
Seasonal and Multi-year Variability of Ice Dynamics of South Croker Bay Glacier, Devon Ice Cap, Canadian Arctic from 2015 to 2021 |
title_short |
Seasonal and Multi-year Variability of Ice Dynamics of South Croker Bay Glacier, Devon Ice Cap, Canadian Arctic from 2015 to 2021 |
title_full |
Seasonal and Multi-year Variability of Ice Dynamics of South Croker Bay Glacier, Devon Ice Cap, Canadian Arctic from 2015 to 2021 |
title_fullStr |
Seasonal and Multi-year Variability of Ice Dynamics of South Croker Bay Glacier, Devon Ice Cap, Canadian Arctic from 2015 to 2021 |
title_full_unstemmed |
Seasonal and Multi-year Variability of Ice Dynamics of South Croker Bay Glacier, Devon Ice Cap, Canadian Arctic from 2015 to 2021 |
title_sort |
seasonal and multi-year variability of ice dynamics of south croker bay glacier, devon ice cap, canadian arctic from 2015 to 2021 |
publisher |
University of Waterloo |
publishDate |
2023 |
url |
http://hdl.handle.net/10012/19095 |
long_lat |
ENVELOPE(-82.499,-82.499,75.335,75.335) ENVELOPE(-61.683,-61.683,-63.966,-63.966) ENVELOPE(-83.249,-83.249,74.702,74.702) |
geographic |
Arctic Nunavut Canada Greenland Devon Ice Cap Croker Croker Bay |
geographic_facet |
Arctic Nunavut Canada Greenland Devon Ice Cap Croker Croker Bay |
genre |
Antarc* Antarctica Arctic Climate change Croker Bay glacier glacier* Greenland Ice cap Nunavut Sea ice |
genre_facet |
Antarc* Antarctica Arctic Climate change Croker Bay glacier glacier* Greenland Ice cap Nunavut Sea ice |
op_relation |
http://hdl.handle.net/10012/19095 |
_version_ |
1766048615529185280 |