Mechanisms of variability in Atlantic ocean heat transport and meridional overturning in global climate models

Thesis (Ph.D.)--University of Washington, 2021 Meridional ocean heat transport (OHT) plays a major role in global climate. The Atlantic Ocean is particularly relevant to the global climate because its OHT is northward in both hemispheres due to the existence of the strong Atlantic Meridional Overtur...

Full description

Bibliographic Details
Main Author: Oldenburg, Dylan Charles
Other Authors: Armour, Kyle C
Format: Thesis
Language:English
Published: 2021
Subjects:
Online Access:http://hdl.handle.net/1773/47665
id ftunivwashington:oai:digital.lib.washington.edu:1773/47665
record_format openpolar
spelling ftunivwashington:oai:digital.lib.washington.edu:1773/47665 2023-05-15T14:56:44+02:00 Mechanisms of variability in Atlantic ocean heat transport and meridional overturning in global climate models Oldenburg, Dylan Charles Armour, Kyle C 2021 application/pdf http://hdl.handle.net/1773/47665 en_US eng Oldenburg_washington_0250E_23197.pdf http://hdl.handle.net/1773/47665 CC BY-ND North Atlantic variability ocean heat transport Physical oceanography Atmospheric sciences Oceanography Thesis 2021 ftunivwashington 2023-03-12T19:01:06Z Thesis (Ph.D.)--University of Washington, 2021 Meridional ocean heat transport (OHT) plays a major role in global climate. The Atlantic Ocean is particularly relevant to the global climate because its OHT is northward in both hemispheres due to the existence of the strong Atlantic Meridional Overturning Circulation (AMOC). This thesis gives new insights into what mechanisms drive changes in North Atlantic OHT. The first chapter focuses on the mechanisms that drive changes in OHT into the Arctic from the North Atlantic under both internal variability and CO2 forced climate change, which are important to understand because the Arctic is experiencing particularly rapid climate change. Our results indicate that the mechanisms differ depending on whether the OHT changes occur under CO2 forcing or internal variability. We also find that an increase in OHT into the Arctic can occur despite a decrease in the strength of AMOC un- der global warming. Chapter 2 considers the entire North Atlantic, and aims to determine the mechanisms driving low-frequency OHT variability using a novel method that isolates a mode of low-frequency variability without any explicit low-pass filtering of the data. Here our results suggest that in global climate models, North Atlantic OHT and AMOC are driven primarily by changes in water-mass transformation in the Labrador Sea regardless of which deepwater formation regions dominate the climatological water-mass transformation and AMOC. In Chapter 3, we investigate how these mechanisms differ in higher resolution models. Chapter 3 Part I focuses on determining how well the time-mean AMOC and high-latitude water-mass transformation are represented in a high-resolution coupled model compared to an equivalent low-resolution version. We find that a high-resolution coupled model reproduces the water-mass transformation found in an atmospheric reanalysis-forced ocean simulation fairly effectively, especially compared to a low-resolution version. Chapter 3 Part II applies a similar analysis to what ... Thesis Arctic Climate change Global warming Labrador Sea North Atlantic University of Washington, Seattle: ResearchWorks Arctic
institution Open Polar
collection University of Washington, Seattle: ResearchWorks
op_collection_id ftunivwashington
language English
topic North Atlantic variability
ocean heat transport
Physical oceanography
Atmospheric sciences
Oceanography
spellingShingle North Atlantic variability
ocean heat transport
Physical oceanography
Atmospheric sciences
Oceanography
Oldenburg, Dylan Charles
Mechanisms of variability in Atlantic ocean heat transport and meridional overturning in global climate models
topic_facet North Atlantic variability
ocean heat transport
Physical oceanography
Atmospheric sciences
Oceanography
description Thesis (Ph.D.)--University of Washington, 2021 Meridional ocean heat transport (OHT) plays a major role in global climate. The Atlantic Ocean is particularly relevant to the global climate because its OHT is northward in both hemispheres due to the existence of the strong Atlantic Meridional Overturning Circulation (AMOC). This thesis gives new insights into what mechanisms drive changes in North Atlantic OHT. The first chapter focuses on the mechanisms that drive changes in OHT into the Arctic from the North Atlantic under both internal variability and CO2 forced climate change, which are important to understand because the Arctic is experiencing particularly rapid climate change. Our results indicate that the mechanisms differ depending on whether the OHT changes occur under CO2 forcing or internal variability. We also find that an increase in OHT into the Arctic can occur despite a decrease in the strength of AMOC un- der global warming. Chapter 2 considers the entire North Atlantic, and aims to determine the mechanisms driving low-frequency OHT variability using a novel method that isolates a mode of low-frequency variability without any explicit low-pass filtering of the data. Here our results suggest that in global climate models, North Atlantic OHT and AMOC are driven primarily by changes in water-mass transformation in the Labrador Sea regardless of which deepwater formation regions dominate the climatological water-mass transformation and AMOC. In Chapter 3, we investigate how these mechanisms differ in higher resolution models. Chapter 3 Part I focuses on determining how well the time-mean AMOC and high-latitude water-mass transformation are represented in a high-resolution coupled model compared to an equivalent low-resolution version. We find that a high-resolution coupled model reproduces the water-mass transformation found in an atmospheric reanalysis-forced ocean simulation fairly effectively, especially compared to a low-resolution version. Chapter 3 Part II applies a similar analysis to what ...
author2 Armour, Kyle C
format Thesis
author Oldenburg, Dylan Charles
author_facet Oldenburg, Dylan Charles
author_sort Oldenburg, Dylan Charles
title Mechanisms of variability in Atlantic ocean heat transport and meridional overturning in global climate models
title_short Mechanisms of variability in Atlantic ocean heat transport and meridional overturning in global climate models
title_full Mechanisms of variability in Atlantic ocean heat transport and meridional overturning in global climate models
title_fullStr Mechanisms of variability in Atlantic ocean heat transport and meridional overturning in global climate models
title_full_unstemmed Mechanisms of variability in Atlantic ocean heat transport and meridional overturning in global climate models
title_sort mechanisms of variability in atlantic ocean heat transport and meridional overturning in global climate models
publishDate 2021
url http://hdl.handle.net/1773/47665
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
Global warming
Labrador Sea
North Atlantic
genre_facet Arctic
Climate change
Global warming
Labrador Sea
North Atlantic
op_relation Oldenburg_washington_0250E_23197.pdf
http://hdl.handle.net/1773/47665
op_rights CC BY-ND
_version_ 1766328808582938624