A Geophysical Investigation of the Arctic Sea Ice Surface

Thesis (Ph.D.)--University of Washington, 2016-06 The oldest records of the Arctic sea ice pack illustrate a frozen, yet dynamic icescape composed of hummocks and weathered ridges draped in thick snow. In recent decades, the effects of climate change have transformed this image: the Arctic sea ice p...

Full description

Bibliographic Details
Main Author: Webster, Melinda Anne
Other Authors: Rigor, Ignatius G
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/1773/36799
id ftunivwashington:oai:digital.lib.washington.edu:1773/36799
record_format openpolar
spelling ftunivwashington:oai:digital.lib.washington.edu:1773/36799 2023-05-15T14:48:45+02:00 A Geophysical Investigation of the Arctic Sea Ice Surface Webster, Melinda Anne Rigor, Ignatius G 2016-06 application/pdf http://hdl.handle.net/1773/36799 en_US eng Webster_washington_0250E_16045.pdf http://hdl.handle.net/1773/36799 Arctic melt ponds remote sensing sea ice snow Geophysics Physical oceanography oceanography Thesis 2016 ftunivwashington 2023-03-12T18:56:16Z Thesis (Ph.D.)--University of Washington, 2016-06 The oldest records of the Arctic sea ice pack illustrate a frozen, yet dynamic icescape composed of hummocks and weathered ridges draped in thick snow. In recent decades, the effects of climate change have transformed this image: the Arctic sea ice pack is younger, thinner, and more dynamic. As a result, the properties of its surface are changing and impacting its ice mass balance. This work investigates the recent geophysical changes of the Arctic sea ice surface, giving emphasis to snow, melt ponds, and sea ice surface topography through the three following papers: (1) interdecadal changes in spring snow depth, (2) seasonal evolution of melt ponds, and (3) the spatial scaling of melt pond distributions. In the first analysis, recent in situ and airborne observations were used to extend the snow climatology to the contemporary period. Through this, we were able to identify the interdecadal change in spring snow depth distributions, and found that snow has thinned by 37 ± 29% in the western Arctic and 56 ± 33% in the Beaufort and Chukchi seas. The decrease was attributed to later autumnal sea ice formation. During the peak snowfall period in autumn, snow falls into the ocean and melts due to the absence of sea ice. In the second analysis, an algorithm was developed for identifying melt ponds in high-resolution satellite images of a Lagrangian site. The site was composed mixed sea ice types, allowing for a comparison of seasonal melt pond evolution between first-year and multiyear sea ice undergoing the same forcings. Surprisingly, melt ponds formed three weeks earlier on multiyear sea ice than first-year sea ice. Nearly half of the snow on the multiyear sea ice was optically-thin, which likely contributed to early melt pond formation. The uniformity in melt pond formation, drainage, and distribution was inversely proportional to the level of sea ice deformation; melt pond uniformity increased with decreasing sea ice deformation. The third analysis investigated ... Thesis Arctic Chukchi Climate change ice pack Sea ice University of Washington, Seattle: ResearchWorks Arctic
institution Open Polar
collection University of Washington, Seattle: ResearchWorks
op_collection_id ftunivwashington
language English
topic Arctic
melt ponds
remote sensing
sea ice
snow
Geophysics
Physical oceanography
oceanography
spellingShingle Arctic
melt ponds
remote sensing
sea ice
snow
Geophysics
Physical oceanography
oceanography
Webster, Melinda Anne
A Geophysical Investigation of the Arctic Sea Ice Surface
topic_facet Arctic
melt ponds
remote sensing
sea ice
snow
Geophysics
Physical oceanography
oceanography
description Thesis (Ph.D.)--University of Washington, 2016-06 The oldest records of the Arctic sea ice pack illustrate a frozen, yet dynamic icescape composed of hummocks and weathered ridges draped in thick snow. In recent decades, the effects of climate change have transformed this image: the Arctic sea ice pack is younger, thinner, and more dynamic. As a result, the properties of its surface are changing and impacting its ice mass balance. This work investigates the recent geophysical changes of the Arctic sea ice surface, giving emphasis to snow, melt ponds, and sea ice surface topography through the three following papers: (1) interdecadal changes in spring snow depth, (2) seasonal evolution of melt ponds, and (3) the spatial scaling of melt pond distributions. In the first analysis, recent in situ and airborne observations were used to extend the snow climatology to the contemporary period. Through this, we were able to identify the interdecadal change in spring snow depth distributions, and found that snow has thinned by 37 ± 29% in the western Arctic and 56 ± 33% in the Beaufort and Chukchi seas. The decrease was attributed to later autumnal sea ice formation. During the peak snowfall period in autumn, snow falls into the ocean and melts due to the absence of sea ice. In the second analysis, an algorithm was developed for identifying melt ponds in high-resolution satellite images of a Lagrangian site. The site was composed mixed sea ice types, allowing for a comparison of seasonal melt pond evolution between first-year and multiyear sea ice undergoing the same forcings. Surprisingly, melt ponds formed three weeks earlier on multiyear sea ice than first-year sea ice. Nearly half of the snow on the multiyear sea ice was optically-thin, which likely contributed to early melt pond formation. The uniformity in melt pond formation, drainage, and distribution was inversely proportional to the level of sea ice deformation; melt pond uniformity increased with decreasing sea ice deformation. The third analysis investigated ...
author2 Rigor, Ignatius G
format Thesis
author Webster, Melinda Anne
author_facet Webster, Melinda Anne
author_sort Webster, Melinda Anne
title A Geophysical Investigation of the Arctic Sea Ice Surface
title_short A Geophysical Investigation of the Arctic Sea Ice Surface
title_full A Geophysical Investigation of the Arctic Sea Ice Surface
title_fullStr A Geophysical Investigation of the Arctic Sea Ice Surface
title_full_unstemmed A Geophysical Investigation of the Arctic Sea Ice Surface
title_sort geophysical investigation of the arctic sea ice surface
publishDate 2016
url http://hdl.handle.net/1773/36799
geographic Arctic
geographic_facet Arctic
genre Arctic
Chukchi
Climate change
ice pack
Sea ice
genre_facet Arctic
Chukchi
Climate change
ice pack
Sea ice
op_relation Webster_washington_0250E_16045.pdf
http://hdl.handle.net/1773/36799
_version_ 1766319827217022976